Water Resources System Modeling Water Quality Modeling Water

  • Slides: 23
Download presentation
Water Resources System Modeling Water Quality Modeling Water Resources Planning and Management: M 8

Water Resources System Modeling Water Quality Modeling Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Objectives v To discuss about water quality parameters and standards v To discuss about

Objectives v To discuss about water quality parameters and standards v To discuss about river water quality modeling, its components and governing equations v To model dissolved oxygen in rivers 2 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Introduction Water quality maintaining and monitoring has become an important part of sustainable development

Introduction Water quality maintaining and monitoring has become an important part of sustainable development Quality problems in water arise mainly due to its molecular structure itself which makes it a universal dissolvent Water quality is expressed as a function of space and time Quality of water body shows rapid variations Variations are more in a river, less in lakes and much less in aquifers. 3 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Water Quality Monitoring indicates the long term, standardized measurement and observation of the environment

Water Quality Monitoring indicates the long term, standardized measurement and observation of the environment Location of sampling station depends on the purpose of study Sampling stations can be divided into i. Basic stations which are located usually at the mouth of main streams, major tributaries, downstream of river development projects, at hydrometric stations, gauge discharge sites, industrial and urban centers and at points of water use ii. Auxiliary stations which are meant to analyse the effect of pollutants discharged into a stream, determination of assimilation capacity of stream etc Stream quality is assessed by interpolating the data collected at these stations. Samples for water quality should be taken at places where composition is uniform across the cross-section. 4 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Water Quality Monitoring… Sampling points in rivers should be away from any disturbing influences

Water Quality Monitoring… Sampling points in rivers should be away from any disturbing influences Sampling frequency depends on the purpose and relative importance of the station, variability of data and accessibility of station Basic stations usually collect at a sampling frequency of 3 - 4 months per year Atleast one sample should be taken in one season Stations located downstream of a waste outlet, should take samples weekly or bi- weekly If the purpose is recreational, sampling can be restricted to the season of use. 5 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Water Quality Parameters Many organic constituents may present in water Measurement of all of

Water Quality Parameters Many organic constituents may present in water Measurement of all of them may be practically difficult Organic pollution is indicated by the non-parametric tests Carbon Oxygen Demand (COD) or Total Organic Carbon (TOC). Parameters to be measured are the following: Total organic carbon, biochemical oxygen demand (BOD), cyanide, pesticides, suspended solids, nitrogen, fluoride, cadmium, chromium, copper, lead, nickel, zinc, mercury, boron, dissolved oxygen (DO), p. H value, and coliform bacteria. Additional information such as total hardness, alkalinity, calcium hardness, sulphate, phosphate, sodium, potassium etc may be also needed if the objective is to evaluate the influence of pollution control measures on the cost of water treatment. 6 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Water Quality Standards Usage of water depends on its quality Permissible limits depend on

Water Quality Standards Usage of water depends on its quality Permissible limits depend on the intended use For example, water from a particular source may be good for irrigation, but may not be advisable for drinking Guidelines for drinking water quality were issued by WHO in 1996 (www. who. int/water_sanitaion_health/Water_quality/drinkwat. htm) Bacteriological quality of drinking water Organisms All water intended for drinking E. coli or thermotolerant coliform bacteria Treated water entering the distribution system E. coli or thermotolerant coliform bacteria Total coliform bacteria Treated water in the distribution system E. coli or thermotolerant coliform bacteria Total coliform bacteria 7 Water Resources Planning and Management: M 8 L 4 Guideline Must not be detectable in any 100 ml sample Must not be detectable in any 100 ml sample D Nagesh Kumar, IISc

River Water Quality Modeling Water quality can be divided into five categories based on

River Water Quality Modeling Water quality can be divided into five categories based on the colour of discharge: Category Colour Amount of pollution I Blue No/ Slight II Green Moderate III Yellow Heavy IV Red Excessive V Black Zone of devastation Two components for river water quality modeling: Forecasting the developments in the basin and subsequent effects in the water quality Forecasting of pollution concentration changes within the stream which includes prediction of solute concentration at various points at various times taking solute concentration at specified point as input and finding the dominant processes controlling the solute concentration. 8 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

River Water Quality Modeling… Forecasting of concentration depends on the stability of contaminants Contaminants

River Water Quality Modeling… Forecasting of concentration depends on the stability of contaminants Contaminants are stable if the concentration changes only through dilution and evaporation However, precipitation, sedimentation, adsorption etc also act as forcing factors to change the concentrations of many organic and inorganic substances Such processes are influenced by factors such as p. H, temperature, bed characteristics etc, which need to be treated separately Pollutants may enter the river through a Point source: If the source is a well-defined outlet such as industrial outlet or municipal sewers Non-point source: If the source is distributed along the water course such as runoff from land 9 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

River Water Quality Modeling… Source of pollutants can also be classified as continuous and

River Water Quality Modeling… Source of pollutants can also be classified as continuous and instantaneous source Continuous sources: Dump pollutants over a long period of time (eg. municipal waste water plant) Instantaneous sources: Dump pollutants for a very short interval of time (eg. Spill from a tanker). Pollutograph: A plot of pollute concentration with respect to time Loadograph: Graph of the product of pollutant concentration and flow rate/time 10 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model Governing dynamic equations of a river water

Components of a River Water Quality Model Governing dynamic equations of a river water quality model consider various hydrologic, thermal and biochemical processes that take place within the system These equations are basically conservation of mass, momentum and energy. Biochemical and chemical processes in a river are influenced by hydraulic and thermal conditions Main influencing hydraulic variables are flow velocity, depth and discharge An increase in flow velocity decreases the self-purification It also results in increased turbulence Aids in proper mixing of oxygen Increases reaeration. Greater depths block penetration of sunlight – Slows down the photosynthetic process Pollutant concentration is inversely proportional to discharge since an increased discharge increases the dilution rate. 11 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… River water quality model can be divided

Components of a River Water Quality Model… River water quality model can be divided into three components Hydraulic Thermal and Biochemical submodels Hydraulic and thermal models: Considering one-dimensional unsteady flow, the influencing variables are flow depth and cross-section of flow Influencing equations are conservation of mass and momentum. Thermal model has only one variable i. e. , temperature. This submodel can be skipped by directly inputting the variable to the biochemical model. 12 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… Biochemical model: Real life interactions may lead

Components of a River Water Quality Model… Biochemical model: Real life interactions may lead to a large number of variables Make the model complex One may reduce the number of variables by substitution or grouping of similar variables Pertinent indicator of water quality: Dissolved oxygen (DO) BOD: Amount of oxygen needed for biochemical oxidation of matter in a unit volume of water Most of the biochemical models are simplified versions of the real processes 13 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… Geochemical processes In addition to the physical

Components of a River Water Quality Model… Geochemical processes In addition to the physical processes, chemical and biological processes also influence the solute transport These geochemical reactions can be either Homogenous: Dissolved species interact with species of same phase (eg. Hydrolysis) or Heterogenous: Species from different phases are involved (eg. Reaction between dissolved oxygen and atmospheric oxygen) Sorption Process which controls the pollute concentration Process in which a dissolved species called sorbate becomes associated with a solid surface called sorbent Absorption: Sorbate penetrate the sorbent Adsorption: When sorbate interacts with surface or intersurface of sorbent 14 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… Pollutant concentration C: Measure of the quantity

Components of a River Water Quality Model… Pollutant concentration C: Measure of the quantity of a constituent C=M/V where M is the mass of the constituent and V is the volume of fluid. Transport of pollutant in rivers Transport of a constituent is measured in terms of flux Flux is the rate of flow of mass or energy per unit area normal to the direction of flow Unit: Quantity per unit area per unit time. Pollutant is transferred through two important mechanisms: Advection and Dispersion. 15 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… Advection (or Convection): Transfer of a constituent

Components of a River Water Quality Model… Advection (or Convection): Transfer of a constituent due to the motion of the carrying fluid The constituent moves with the fluid velocity Flux F due to advection is the product of velocity U and concentration C F= UC Volume of the constituent remains same, while the location changes Dispersion: As the constituent moves downstream, the volume increases and the concentration decreases due to mixing up Dispersion can be due to molecular diffusion and velocity variations In natural streams, the main forcing factor is velocity variations Flux due to diffusion is given by Flick’s law Flux in the x direction is where Ex is the longitudinal dispersion coefficient or diffusivity. 16 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Components of a River Water Quality Model… Effects of advection and dispersion Time, t+1

Components of a River Water Quality Model… Effects of advection and dispersion Time, t+1 Advection Dispersion Advection + Dispersion 17 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Governing Advective – Diffusion Equation Basic equation behind the effects of advection and dispersion

Governing Advective – Diffusion Equation Basic equation behind the effects of advection and dispersion on solute concentration is the conservation of mass Time rate of change of mass = mass inflow – mass outflow One-dimensional form commonly applied in streams where U is the average longitudinal velocity A cross-sectional area and EL is the longitudinal dispersion coefficient. Advection-dispersion equation assuming constant U and EL Above equations can be solved analytically 18 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Modeling of Oxygen in Rivers Dissolved oxygen Depends on temperature, pressure, dissolved solids turbulence

Modeling of Oxygen in Rivers Dissolved oxygen Depends on temperature, pressure, dissolved solids turbulence etc. DO in freshwaters at 1 atmospheric pressure ranges from 15 mg/L at 00 C to 6 mg/L at 400 C DO level is used as an indicator of pollution by organic matter Biochemical oxygen demand (BOD) Amount of oxygen required for aerobic micro-organisms to oxidize the organic matter to a stable inorganic form A measure of the amount of biochemically degradable organic matter present in the water Concentrations in rivers vary from 2 to 15 mg/L BOD in unpolluted water is less than 2 mg/L Raw sewage has a BOD of about 600 mg/L which may come down to 20 – 100 mg/L after treatment. 19 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Modeling of Oxygen in Rivers… Chemical oxygen demand (COD) A measure of the oxygen

Modeling of Oxygen in Rivers… Chemical oxygen demand (COD) A measure of the oxygen equivalent of organic matter that is susceptible to oxidation by a strong oxidizing agent In natural water, it is the amount of oxygen required for oxidation of a waste to carbon dioxide and water COD of surface water ranges from 20 mg/L (for unpolluted waters) to 200 mg/L (for effluent added waters) 20 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Modeling of Oxygen in Rivers… Mass balance of BOD and oxygen deficit in a

Modeling of Oxygen in Rivers… Mass balance of BOD and oxygen deficit in a stream with constant flow and geometry can be expressed as where U is the average stream velocity, L is the carbonaceous BOD concentration, x is the distance downstream from the discharge point, kr is the total removal rate, D is the dissolved oxygen deficit, ka is the aeration rate and kd is the removal rate of BOD 21 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Modeling of Oxygen in Rivers… cs is the saturation concentration for DO c is

Modeling of Oxygen in Rivers… cs is the saturation concentration for DO c is the oxygen concentration Then deficit D = cs – c Above equations can be solved for BOD and DO concentration for a single point source whose BOD concentration is L 0 and oxygen deficit is D 0 and can be expressed as Water quality models for catchments, lakes , reservoirs and ground water differ from those of rivers in terms of sources, biological considerations etc. 22 Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc

Thank You Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar,

Thank You Water Resources Planning and Management: M 8 L 4 D Nagesh Kumar, IISc