Water Cooling with Air Cooling Tower The most

  • Slides: 13
Download presentation
Water Cooling with Air (Cooling Tower) • The most important operation Liquid (Warm water)

Water Cooling with Air (Cooling Tower) • The most important operation Liquid (Warm water) Humid air out (Warmed water is cooled by contact with atmosphere air) • The latent heat of water is so large (as compare with sensible heat) L’ 2 TL 2 • Lewis relation applies (Le =1. 0) for the air-water system L’ 2 TL 2 Unknowns TL 1 Gas in: TG 1 , Y’G 1 , H’G 1 Modeling Z Z G’s Tower Knowns TG 1 Cooled water out TL 1 Y’G 1 H’G 1 Gas in (Air)

Water Cooling with Air (Cooling Tower) Humid air Liquid out (Warm water) Energy balance

Water Cooling with Air (Cooling Tower) Humid air Liquid out (Warm water) Energy balance in CV (III): L’CALd. TL=G’s{Csd. TG+[CA(TG-To)-CAL(TLTo)+λo]d. Y’} L’CALd. TL= G’s. Csd. TG+G’sλod. Y’ = G’s(Csd. TG+λod. Y’) H’=Cs(TG-To)+λo. Y’ Cs=CB+CAY’ L’CALd. TL = G’sd. H’ L’ = Constant Tower The sensible heat terms are ignored in comparison with the latent heat d. H’=Csd. TG+λod. Y’ L’CALd. TL ≈ G’sd. H’ L’CAL(TL 2 -TL 1)= G’s(H’ 2 -H’ 1) Cooled water out Operating Line Gas in (Air)

L’CAL(TL 2 -TL 1)= G’s(H’ 2 -H’ 1) (H’i vs Ti) TL 2 Humid

L’CAL(TL 2 -TL 1)= G’s(H’ 2 -H’ 1) (H’i vs Ti) TL 2 Humid air out Liquid (Warm water) 2 Slope=(L’CAL/G’s) max H’ 2 2 1 Slope=(L’CAL/G’s) 1 G’s (min) Cold water out H’ 1 TL 2 Water Liquid Temperature (TL) H’ 2 Tower Enthalpy of air-vapor mixture (H’) Water Cooling with Air (Cooling Tower) Operating Line Equilibrium curve TL 1 H’ 1 Gas in (Air)

Water Cooling with Air (Cooling Tower) Mass transfer: NAMAa. Md. Z= -G’s d. Y’=

Water Cooling with Air (Cooling Tower) Mass transfer: NAMAa. Md. Z= -G’s d. Y’= MAFG[ln(1 -PAi/Pt)/(1 -PAG/Pt)]a. Md. Z = MAk. G(PAi-PAG)a. Md. Z = MBPBmk. Y(Y’i-Y’)a. Md. Z G’sd. Y’ = k. Y(Y’i-Y’)a. Md. Z Energy balance in CV (gas-I): -G’s. Csd. TG= h’Ga. H(TG-Ti)d. Z → G’s. Csd. TG= h. Ga. H(Ti-TG)d. Z Energy balance in CV (Liquid-II): L’CALd. TL= [G’s. CALd. Y’-h. La. Hd. Z](Ti-TL) 0 L’CALd. TL= h. L(TL-Ti)a. Hd. Z If the sensible heat of transfer vapor is ignored: Energy balance in CV (III): L’CALd. TL= G’s. Csd. TG+G’sλod. Y’ ≈ G’sd. H’ L’CALd. TL= h. Ga. H(Ti-TG)d. Z + λo k. Y(Y’i-Y’)a. Md. Z = G’sd. H’

Water Cooling with Air (Cooling Tower) Enthalpy of gas-vapor mixture (H’) Operating Line L’CAL(TL

Water Cooling with Air (Cooling Tower) Enthalpy of gas-vapor mixture (H’) Operating Line L’CAL(TL 2 -TL 1)= G’s(H’ 2 -H’ 1) II Liquid d. Z TL Ti H’ 2 TL 1 H’G III TL H’ H’ 1 . Ti I Gas Liquid Temperature (TL) TL 2 TL H’ Ti H’i

Water Cooling with Air (Cooling Tower) L’CALd. TL= h. Ga. H(Ti-TG)d. Z + λo

Water Cooling with Air (Cooling Tower) L’CALd. TL= h. Ga. H(Ti-TG)d. Z + λo k. Y(Y’i-Y’)a. Md. Z = G’sd. H’ If r = h. Ga. H/(Csk. Ya. M) G’sd. H’ = k. Ya. M[(Csr. Ti + λo. Y’i) – (Csr. TG + λo. Y’)]d. Z Le (Lewis relation) = h. G/Csk. Y a. M ≈ a. H for Air-Water syatem → Le ≈ 1 r = h. Ga. H/(Csk. Ya. M) ≈ 1 H’i H’ G’sd. H’ = k. Ya. M[(Cs. Ti + λo. Y’i) – (Cs. TG + λo. Y’)]d. Z G’sd. H’ = k. Ya(H’i – H’)d. Z

Water Cooling with Air (Cooling Tower) G’sd. H’ = k. Ya(H’i – H’)d. Z

Water Cooling with Air (Cooling Tower) G’sd. H’ = k. Ya(H’i – H’)d. Z Energy balance in CV (Liquid-III): L’CALd. TL= G’sd. H’ = k. Ya(H’i – H’)d. Z = h. La(TL-Ti)d. Z TL H’ Ti H’i Slope = -(h. La/k. Ya) Enthalpy of gas-vapor mixture (H’) Energy balance in CV (Liquid-II): L’CALd. TL= h. L(TL-Ti)a. Hd. Z Ti H’i TL H’ Liquid Temperature (TL)

Water Cooling with Air (Cooling Tower) G’sd. H’ = k. Ya(H’i – H’)d. Z

Water Cooling with Air (Cooling Tower) G’sd. H’ = k. Ya(H’i – H’)d. Z = h. La(TL-Ti)d. Z Integration Ht. G Nt. G = Z t. G = transfer in gas phase

 • Average driving force Enthalpy of gas-vapor mixture (H’) Water Cooling with Air

• Average driving force Enthalpy of gas-vapor mixture (H’) Water Cooling with Air (Cooling Tower) • Numerical solutions Ti H’i TL H’ Liquid Temperature (TL) Ht. G Nt. G = Z

Enthalpy of gas-vapor mixture (H’) Water Cooling with Air (Cooling Tower) t. OG =

Enthalpy of gas-vapor mixture (H’) Water Cooling with Air (Cooling Tower) t. OG = transfer overall in gas phase H’* Ti H’i TL H’ Liquid Temperature (TL) ↑ ↑ Ht. OG Nt. OG = Z

Water Cooling Tower Important thing in cooling tower modeling: Liquid (Water) Air out Tower

Water Cooling Tower Important thing in cooling tower modeling: Liquid (Water) Air out Tower Wet-Bulb Temperature Approach 2. 5 -5 o. C Water out TL 1 TW 1 Gas in (Air)

Water Cooling Tower • Evaporation Losses (E) • Windage Losses (W) Warm Water Blowdown

Water Cooling Tower • Evaporation Losses (E) • Windage Losses (W) Warm Water Blowdown (xo) (0. 1 -0. 3% of L) • Make Up (M) • Blowdown (B) Mass balance: M=E+W+B xi. M=xo(W+B) Air out Evaporation Losses Plant (Q) Windage Losses Make up (xi) Cold Water Gas in (Air)

The sensible heat terms are ignored in comparison with the latent heat For 1

The sensible heat terms are ignored in comparison with the latent heat For 1 kg liquid water (2. 205 lbm) Heat from 32 o. F to 212 o. F Sensible Heat : q. S=m. Cp(T 2 -T 1) Cp for liquid water=4. 2 J/g. K=1 Btu/lbm. R q. S=2. 205*1*(212 -32)=396. 9 Btu Latent Heat (T=32 o. F)=q. L=mλ=mhfg q. L=2. 205*1075. 8=2372. 1 Btu