Vital Sign Estimation from Passive Thermal Video Ming

  • Slides: 1
Download presentation
Vital Sign Estimation from Passive Thermal Video Ming Yang 2, Qiong Liu 1, Thea

Vital Sign Estimation from Passive Thermal Video Ming Yang 2, Qiong Liu 1, Thea Turner 1, Ying Wu 2 1 FX Palo Alto Laboratory, Inc. , 3400 Hillview Ave. , Palo Alto, CA 94304 Goal Challenges Ø Robust harmonic analysis with low signal-to-noise ratio (SNR) temperature modulation signal, e. g. modulation magnitude 0. 1 K vs. camera sensitivity 0. 025 K. Motivations Pioneering work Ø A novel contact-free vital sign measurement method. Ø N. Sun, M. Garbey, A. Merla, I. Pavlidis. Imaging the cardiovascular pulse. CVPR 2005. (S) Ø Low risk of harm & convenience for quick deployment. Ø S. Y. Chekmenev, A. A. Farag, E. A. Essock. Multiresolution approach for non-contact measurements of arterial pulse using thermal Ø Potential applications: airport heath screening, longimaging. CVPR 2006 Workshop. term elder care, workplace preventive care, etc. Overview of our approach Automatic ROI segmentation and alignment Ø Region-of-interests segmentation by thresholding the isotherms and alignment by contour tracking. Ø Segment the initial ROI by selecting the isotherm with the sharpest gradient. Ø Align the ROI by tracking the contour Ø Extract the temporal signals for individual pixels inside the ROI and denote by CVPR 24 June 2008 – 26, 2008 Ø Heart rate estimation results Est. bpm Diff. RMSE 65. 3 65. 8 +0. 5 1. 9 2000 66. 6 63. 9 -2. 7 3. 9 30 1750 65. 7 64. 7 -1. 0 3. 3 4 60 3000 59. 8 60. 7 +0. 9 2. 5 5 60 3500 60. 7 60. 3 -0. 4 3. 3 6 60 2500 66. 3 53. 0 -3. 3 3. 9 7 60 3000 61. 1 60. 9 -0. 2 2. 3 8 115 5000 64. 0 65. 0 +1. 0 3. 8 9 115 5000 78. 9 80. 1 +1. 2 1. 9 Ø 20 subjects for heart rate estimation 10 115 5000 65. 2 64. 4 -0. 8 1. 7 11 115 5000 62. 8 66. 2 +3. 4 4. 2 Ø 7 subjects for respiratory rate estimation Ground truth: ADI Power. Lab 4/30 12 115 5000 63. 5 62. 4 -1. 1 3. 2 13 115 5000 73. 3 72. 6 -0. 7 1. 8 14 115 5000 86. 6 87. 9 +1. 3 4. 9 15 115 5000 78. 7 76. 5 -2. 2 3. 1 16 115 5000 75. 3 74. 7 -0. 7 1. 9 17 115 5000 83. 1 83. 2 +0. 1 2. 1 18 115 5000 67. 2 68. 2 -1. 0 1. 3 19 115 5000 67. 6 69. 3 +1. 7 2. 8 20 115 5000 68. 7 70. 1 +1. 4 2. 9 Infrared camera: Subject # fps 1 30 2000 2 30 3 Ø Mid wave: 3. 0 -5. 0 microns Ø Resolution: 640*512 pixels with 14 bits Ø Frame rate: 30/60/115 fps Ø Sensitivity: about 25 m. K Test dataset: Age 20 -60, F: 8 and M: 12 Ø The initial ROI segmentation results # of frames GT bpm Ø Point-by-point comparisons Ø Respiratory rate estimation results Subject # fps Est. bpm Diff. 4 60 3000 18 15. 8 -2. 2 7 60 3000 17 15. 1 -1. 9 10 115 5000 11 11. 8 +0. 8 11 115 5000 17 16. 8 -0. 2 14 115 5000 16 13. 9 -2. 1 15 115 5000 15 13. 1 -1. 9 17 115 5000 20 18. 5 -1. 5 19 115 5000 16 15. 2 -0. 8 Signal enhancement and outlier removal # of frames GT bpm Robust harmonic analysis Ø Perform N-point (N=1024/2048/4096) FFT of all temperature signals of all pixels using a sliding window: Ø Signal enhancement using a non-linear filter, and outlier removal by pixels-of-interests clustering. Ø Robust harmonic analysis by dominant frequency voting. of EECS, Northwestern Univ. , 2145 Sheridan Rd. , Evanston, IL 60208 Experiments Ø Accurate subject alignment for temporal signal extraction, e. g. involuntary muscular movements are inevitable. To explore contact-free heart rate and respiratory rate detection through measuring infrared light modulation emitted near superficial blood vessels or a nasal area. 2 Dept. ØNon-linear filtering by taking the point-by-point minimum of a rectangle window Wr(t) and a Hamming window Wh(t) Ø Cluster H(xj, f ) in the band of interest (40 -100 bpm Conclusions for heart rates, and 6 -30 bpm for respiratory rates) using K-means, then select the largest cluster to estimate. Ø Insensitive to initialization and robust to gentle subject movement and facial expressions. Ø More stable estimation results compared with the state-of-the-art methods.