Viewing o Viewing and viewing space camera space
















- Slides: 16

Viewing o Viewing and viewing space (camera space) o World space to viewing space transformation

World to Viewing Coordinates o Graphics display devices are 2 D rectangular screens. Hence we need to understand how to transform our 3 D world to a 2 D surface o Viewing the desired scene is analogous to taking pictures using a camera o We now need to world coordinates VIEWING TRANSFORMATION viewing coordinates

Camera Analogy o View is described in terms of: o o camera position in world coordinate system camera direction (viewing direction) camera orientation: usually defined by the up vector aperture size: field of view

View Coordinate System o specify a view reference point in the world coordinate system. This can be any point along the camera direction, or the camera position itself o specify the view plane normal N - this gives the camera, or Z direction o specify the view-up direction, V - this gives the camera up direction, or Y direction V y. W P 0 x. W z. W y. W N x. W z. W v’ P 0 v N n v=v’-(v. n) n

Viewing Coordinate System o We can construct a vector U perpendicular to both V and N, and this will correspond to the Xv axis. How? o We can define U as right, V as up, and N as towards the viewer: a right handed system U V=N o We can also define U as right, V as up and N as into the scene: a left handed system V U=N, in which bigger N values mean points are further away V o Open. GL is right handed U y. W P 0 x. W z. W N

View Coordinate System o Some systems (e. g. , Open. GL) allow you to specify a ‘look at’ point, Q, from which N is calculated as the direction to the ‘look at’ point from the view reference point y. W P 0 x. W z. W Q

World to Viewing o Objects must be viewed in the viewing space o This can be done by aligning the view coordinate system with world coordinate system, e. g. , view reference point is transformed to world origin, and U, V, N are aligned with X, Y, Z directions through rotations y (x 0, y 0, z 0) z x

World to Viewing y z o Translate view origin to world origin, then align U, V and N axes with X, Y and Z directions by rotation R = Rz. Ry. Rx o rotate around X to bring N into the X-Z plane o rotate around Y to align N with Z o rotate around Z to align V with Y V o An easier way to work out the rotation matrix R: U o U in world space should be (1, 0, 0) in view space o V should be (0, 1, 0) P 0 o N should be (0, 0, 1) N o So we have the following equations Ux 1. R*(Ux, Uy, Uz, 1)T = (1, 0, 0, 1) (Ux, Uy, Uz, 1)T = Uy T 2. R*(Vx, Vy, Vz, 1) = (0, 1, 0, 1) Uz T 3. R*(Nx, Ny, Nz, 1) = (0, 0, 1, 1) 1 x

World to Viewing Transformation o Remember U. U=1, U. V=0, U. N=0, V. N=0, so if we choose the rotation matrix as R= o The equations 1, 2, 3 will be satisfied o The rotation matrix is a “change of basis” matrix o So viewing transformation from world space to viewing space is: M = RT

What’s Pw in viewing coordinates? Intuitively, P in viewing coordinate is (-1, 1, 1), but how do we derive it? u z y Pw=(1, 1, 0) v n (0, 0, 1) u, v, n in world space: u=(-1, 0, 0) v=(0, 1, 0) n=(0, 0, -1) x 1. Translate view origin to world origin with translation vector (0, 0, -1) 2. Multiply Pw by matrix M below to align viewing axes with world axes -1 0 0 0 M = 0 1 0 0 -1 1 So Pw in viewing space is: Pv = M T Pw

Open. GL Viewing Coordinate System o The default camera is placed at the coordinate origin of world space (U aligned with the X axis, V aligned with Y, and N aligned with Z), looking along the negative z-direction, and the view plane is perpendicular to the viewing direction yv xv zv

Projection o We need to transform from a special viewing coordinate system (camera on z-axis pointing along the axis) into a projection coordinate system viewing coordinates PROJECTION TRANSFORMATION projection coordinates

Parallel Projection - Two types o In parallel projection, the observer position is at an infinite distance, so the projection lines are parallel o Orthographic parallel projection has view plane perpendicular to direction of projection o Oblique parallel projection has view plane at an oblique angle to direction of projection P 1 P 2 view plane

Parallel Projection Calculation looking along x-axis yv xv zv P(x, y, z) y. V viewing space o (xp, yp, d) d - z. V view plane y. P = y Similarly, x. P = x

Parallel Projection Calculation o So o x = xp o y = yp o z=d If view plane is xoy plane, Then d=0 o The projection transformation matrix is simply x xp 1. 1 yp 0 1 0 0 y d 0 0 d/z 0 z 1 0 0 0 1 1 = projection space 0 0 projection matrix 0 viewing space

Perspective Projection o In a perspective projection, object positions are projected onto the view plane along lines which converge at the observer, or Centre of Projection (COP) P 1 P 2 P 1’ camera P 2’ view plane o Perspective projection gives realistic views, but does not preserve proportions - projections of distant objects are smaller than projections of objects of the same size which are closer to the view plane (fore-shortening)
Camera space to world space
What is single camera production
Camera movement
Space qualified camera
Slogan about claim of policy
Half section line
Is film a text
Eccentric viewing techniques occupational therapy
For viewing tiny objects in a microscope diffraction is
Thank you for viewing my presentation
Steps in viewing
Konsep viewing 3d adalah
Viewing transformation pipeline
Viewing coordinate sering juga disebut
Narmeen is viewing the board in the classroom
Viewing pipeline
Projection in computer graphics