VFET A Transistor Structure for Amorphous semiconductors Michael

  • Slides: 25
Download presentation
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler

VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center, EE Dept. , Technion Israel Institute of Technology, Haifa, Israel

III Vertical Transistors Vacuum tube triode Vertical-junction fieldeffect transistor Solid state triode (AKA SCLT)

III Vertical Transistors Vacuum tube triode Vertical-junction fieldeffect transistor Solid state triode (AKA SCLT) Vertical Organic FET Patent US 841387 from 10/25/1906 D. C. Mayer, N. A. Masnari, and R. J. Lomax, Ieee Transactions on Electron Devices 27, 956 -961 (1980). Yang, Y. ; Heeger, A. J. Nature 1994, 372, (6504), 344346. L. P. Ma and Y. Yang, Appl. Phys. Lett. 85 (21), 5084 (2004).

Lateral Goes Vertical Source L Drain Semiconductor Source Si. O 2 Si++ Gate Si.

Lateral Goes Vertical Source L Drain Semiconductor Source Si. O 2 Si++ Gate Si. O 2 Si++ Lateral FET: Gate Vertical FET: Channel Length Direction Location Ma, L. & Yang, Y. Applied Physics APL 85, 5084 (2004).

III VOFET Architecture Patterned source electrode Source electrode characteristics Conductive; Transparent Perforated conductive layer

III VOFET Architecture Patterned source electrode Source electrode characteristics Conductive; Transparent Perforated conductive layer Virtual electrode A. J. Ben-Sasson et al. , Applied Physics Letters 95, 213301 (2009). L

Processes: Block-copolymers Di-block copolymer self-assembly f. PMMA f. PS

Processes: Block-copolymers Di-block copolymer self-assembly f. PMMA f. PS

Processes - Blockcopolymers Annealing Disordered to molecularly organized Thermal annealing [T↑, TG const. ]

Processes - Blockcopolymers Annealing Disordered to molecularly organized Thermal annealing [T↑, TG const. ] Solvent annealing [T const. , TG↓] 3µm

IV Block-copolymers as photolithography masks Processes: Block-copolymers Design tools: • Chemistry • Dimensions •

IV Block-copolymers as photolithography masks Processes: Block-copolymers Design tools: • Chemistry • Dimensions • Process

Creating patterned source electrode using block co-polymers (BCP) lithography. PS PMMA Au PS Au

Creating patterned source electrode using block co-polymers (BCP) lithography. PS PMMA Au PS Au Ben-Sasson, A. J. et al. Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters 95, 213301 (2009). PS Works on cm scale samples

Device architecture Macro scale top view 3 D Illustration 100μm 500μm 100μm Fundamental parameters

Device architecture Macro scale top view 3 D Illustration 100μm 500μm 100μm Fundamental parameters Gate – Al L - Channel length - active layer thickness D - Perforations’ diameter (~80 nm) FF - perforations area ratio td & t s Drain – Al Dielectric – td Active layer Patterned source – ts 100Å Au O. Globerman, M. Sc. Thesis, Electrical Engineering, Technion, Israel, 2006 A. J. Ben-Sasson and N. Tessler, Nano Letters, vol. 12, pp. 4729 -4733, 2012/09/12 2012.

How VOFET works? Our approach – patterned source electrode: Sze, S. & Ng, K.

How VOFET works? Our approach – patterned source electrode: Sze, S. & Ng, K. Physics of semiconductor devices. (2006).

How VOFET works? Charge density in the Semiconductor layer for Unbiased gate Virtual contact

How VOFET works? Charge density in the Semiconductor layer for Unbiased gate Virtual contact Formation Drain OFF ON OFF Off state – Contact Limited due to Schottky barrier Patterned source Gate dielectric Gate On state – Virtual contact, Space Charged Limited Current Saturated virtual contact

The effect of the perforations’ aspect ratio Measurements Simulations (a) VDS=1 V (b) VDS=1

The effect of the perforations’ aspect ratio Measurements Simulations (a) VDS=1 V (b) VDS=1 V 7 9 13 IG[A] h. S[nm] Au ON Patterned source Gate e- SC Φb 0 Drain Gate dielectric S “Thick” source Tunnel effect D h+ C 60 Al

The Electrode Barrier Φb • High barrier High On/Off • High barrier High VTO

The Electrode Barrier Φb • High barrier High On/Off • High barrier High VTO On and Off channel spatial origin is different A. J. Ben-Sasson, N. Tessler, Journal of Applied Physics 110, 044501 (2011). VOn

V. B Stractured electrode Non-uniform structure JOn VOn JOff VOn

V. B Stractured electrode Non-uniform structure JOn VOn JOff VOn

DC characteristics Reducing Vg: Gate Source Active Drain A. Ben-Sasson, G. Ankonina, M. Greenman

DC characteristics Reducing Vg: Gate Source Active Drain A. Ben-Sasson, G. Ankonina, M. Greenman , M. T. Grimes and N. Tessler , Low-temperature molecular vapor deposition of ultra-thin metal oxide dielectric for low-voltage vertical organic field effect transistors, ACS Appl Mater Interfaces (2013) Solution processed active layer: Drain (Al) 4. 08 e. V N 2200 Source(Au) 4. 0 e. V 5. 1 e. V 5. 6 e. V Ben-Sasson, A. J. , Chen, Z. , Facchetti, A. & Tessler, N. Solution-processed ambipolar vertical organic field effect transistor. Applied Physics Letters 100, 263306 (2012).

Silver Nanowire Based Electrode

Silver Nanowire Based Electrode

Silver Nanowire Based Electrode

Silver Nanowire Based Electrode

Time resolved measurement Assembling time-resolved setup reducing source resistance VFET Scope ch 1 Voltage

Time resolved measurement Assembling time-resolved setup reducing source resistance VFET Scope ch 1 Voltage Amplifier Greenman, M. , Ben-Sasson, A. J. , Chen, Z. , Facchetti, A. & Tessler, N. Fast switching characteristics in vertical organic field effect transistors. Appl. Phys. Lett. 103, 073502 (2013). Scope ch 2

Time resolved measurement Time-resolved simulation m=10 -3 cm 2 V-1 s-1 m=10+1 cm 2

Time resolved measurement Time-resolved simulation m=10 -3 cm 2 V-1 s-1 m=10+1 cm 2 V-1 s-1 ns turns into ps Greenman, M. , Ben-Sasson, A. J. , Chen, Z. , Facchetti, A. & Tessler, N. Fast switching characteristics in vertical organic field effect transistors. Appl. Phys. Lett. 103, 073502 (2013).

Silver Nanowire Based Electrode

Silver Nanowire Based Electrode

Silver Nanowire Based Electrode A. J. Ben-Sasson et al. , Self-Assembled Metallic Nanowire-Based Vertical

Silver Nanowire Based Electrode A. J. Ben-Sasson et al. , Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Appl. Mater. Interfaces 7, 2149 -2152 (2015)

Standard photo-lithography Replacing BCP technic with basic lithography: Fits for metric scale substrates. (matches

Standard photo-lithography Replacing BCP technic with basic lithography: Fits for metric scale substrates. (matches for standard FAB lines) Enables more complex lift-off or etching process. Holes diameter:

Standard photo-lithography Holes diameter effect Diameter Fill Factor Perimeter per unit cell Perimeter per

Standard photo-lithography Holes diameter effect Diameter Fill Factor Perimeter per unit cell Perimeter per device area Perimeter Area = Injection Area Unit cell

Conventional photo-lithography Connecting VOFET’s to invertor: • • The first VOFET invertor! • Low

Conventional photo-lithography Connecting VOFET’s to invertor: • • The first VOFET invertor! • Low performance due to PVOFET strong off current. Not good but still invert the signal.

Thank You The fabrication was performed at the Micro. Nano Fabrication Unit (MNFU), Technion.

Thank You The fabrication was performed at the Micro. Nano Fabrication Unit (MNFU), Technion.