Version 02 02092015 THE LHIRESIII SPECTROGRAPH JeanPierre Rivet

  • Slides: 39
Download presentation
Version 02, 02/09/2015 THE LHIRES-III SPECTROGRAPH Jean-Pierre Rivet CNRS, OCA, Dept. Lagrange jean-pierre. rivet@oca.

Version 02, 02/09/2015 THE LHIRES-III SPECTROGRAPH Jean-Pierre Rivet CNRS, OCA, Dept. Lagrange jean-pierre. rivet@oca. eu © C 2 PU, Observatoire de la Cote d’Azur, Université de Nice Sophia-Antipolis

The LHIRES-III LHIRES = Littrow High RESolution spectrograph 19/12/2021 C 2 PU-Team, Observatoire de

The LHIRES-III LHIRES = Littrow High RESolution spectrograph 19/12/2021 C 2 PU-Team, Observatoire de Nice 2

Diffraction by 1 element Incident beam assumed parallel (wavelength ) Reflecting element Collimator Screen

Diffraction by 1 element Incident beam assumed parallel (wavelength ) Reflecting element Collimator Screen i ~ /d r d Diffracted beam Non-reflecting substrate 19/12/2021 • Maximum in the direction of geometric optics: r = - r • Angular width: ~ / d C 2 PU-Team, Observatoire de Nice 3

Diffraction by “n” elements Reflecting elements Incident beam (wavelength ) Collimator i Screen ?

Diffraction by “n” elements Reflecting elements Incident beam (wavelength ) Collimator i Screen ? Non-reflecting substrate 19/12/2021 C 2 PU-Team, Observatoire de Nice 4

Diffraction by “n” elements Incident beam (wavelength ) Collimator i Screen ? 19/12/2021 C

Diffraction by “n” elements Incident beam (wavelength ) Collimator i Screen ? 19/12/2021 C 2 PU-Team, Observatoire de Nice 5

Diffraction by “n” elements Diffracted beams out of phase : destructive interferences NO LIGHT

Diffraction by “n” elements Diffracted beams out of phase : destructive interferences NO LIGHT Collimator Screen NO LIGHT ! 19/12/2021 C 2 PU-Team, Observatoire de Nice 6

Diffraction by “n” elements Diffracted beams in phase : constructive interferences MAXIMUM LIGHT Collimator

Diffraction by “n” elements Diffracted beams in phase : constructive interferences MAXIMUM LIGHT Collimator Screen LIGHT ! 19/12/2021 C 2 PU-Team, Observatoire de Nice 7

Diffraction by “n” elements a Ra y 1 Ra y 0 i a Delay

Diffraction by “n” elements a Ra y 1 Ra y 0 i a Delay of Ray 1 wrt Ray 0 = a sin( i) a a 19/12/2021 C 2 PU-Team, Observatoire de Nice 8

Diffraction by “n” elements Delay of Ray 1 wrt Ray 0 = a sin(

Diffraction by “n” elements Delay of Ray 1 wrt Ray 0 = a sin( r) a r a Ray 0 a Ray 1 a 19/12/2021 C 2 PU-Team, Observatoire de Nice 9

Diffraction by “n” elements Total delay of Ray 1 wrt Ray 0 : =

Diffraction by “n” elements Total delay of Ray 1 wrt Ray 0 : = a sin( i) + a sin( r) Condition for constructive interferences: =k. a Ra y 1 Ra y 0 i r a Ray 0 integer; called the “order” a Ray 1 a 19/12/2021 C 2 PU-Team, Observatoire de Nice 10

Diffraction by “n” elements Order k = 0 Condition for constructive interferences: = 0,

Diffraction by “n” elements Order k = 0 Condition for constructive interferences: = 0, whatever a Ra y 1 Ra y 0 i r a Ray 0 a Ray 1 ’ ’ sin( i) + sin( r) = 0 a Snell’s law ! direction of reflection on the grating’s plane according to geometric optics NON DISPERSIVE 19/12/2021 C 2 PU-Team, Observatoire de Nice 11

Diffraction by “n” elements Order k ≠ 0 Condition for constructive interferences: =k. a

Diffraction by “n” elements Order k ≠ 0 Condition for constructive interferences: =k. a Ra y 1 Ra y 0 i r a a Ray 0 ’ Ray 1 ’ sin( i) + sin( r) = k. / a DISPERSIVE a 19/12/2021 C 2 PU-Team, Observatoire de Nice 12

Diffraction pattern (monochr. ) d a a a Relative intensity a ~ / (N.

Diffraction pattern (monochr. ) d a a a Relative intensity a ~ / (N. a) N ~ /a Diffraction enveloppe ~ /d -3 / a 19/12/2021 -2 / a - / a 0 /a 2 / a C 2 PU-Team, Observatoire de Nice 3 / a sin( i) + sin( r) 13

Diffraction pattern (polychr. ) Relative intensity Order 0: non dispersive Order 1: dispersive Order

Diffraction pattern (polychr. ) Relative intensity Order 0: non dispersive Order 1: dispersive Order 2: more dispersive Order 3: even more dispersive -3 / a 19/12/2021 -2 / a - / a 0 /a 2 / a C 2 PU-Team, Observatoire de Nice 3 / a sin( i) + sin( r) 14

Blazed gratings STANDARD GRATING BLAZED GRATING Diffraction envelope is maximum when: 0 th order

Blazed gratings STANDARD GRATING BLAZED GRATING Diffraction envelope is maximum when: 0 th order is maximum when: r = - i i r r = - i (blaze angle) i i r r : Normal to the grating : Normal to the grooves 19/12/2021 C 2 PU-Team, Observatoire de Nice 15

Diffraction pattern Relative intensity STANDARD GRATING Order 0: non dispersive Order 1: dispersive Order

Diffraction pattern Relative intensity STANDARD GRATING Order 0: non dispersive Order 1: dispersive Order 2: more dispersive Order 3: even more dispersive -3 / a 19/12/2021 -2 / a - / a 0 /a 2 / a C 2 PU-Team, Observatoire de Nice 3 / a sin( i) + sin( r) 16

Diffraction pattern Relative intensity BLAZED GRATING on order k Blaze angle depends on the

Diffraction pattern Relative intensity BLAZED GRATING on order k Blaze angle depends on the central wavelength 0 and order k -3 / a 19/12/2021 -2 / a Maximum of diffraction curve - / a 0 /a 2 / a C 2 PU-Team, Observatoire de Nice 3 / a ≠ 0 sin( i) + sin( r) 17

Basics on spectrographs Collimation optics Light from the telescope Collimated input beam i Entrance

Basics on spectrographs Collimation optics Light from the telescope Collimated input beam i Entrance slit Camera optics r Dispersing element (grating) 19/12/2021 Sensor Dispersed beam C 2 PU-Team, Observatoire de Nice 18

Littrow configuration Littrow condition: r = i Collimator optics = Camera optics (cost effective

Littrow configuration Littrow condition: r = i Collimator optics = Camera optics (cost effective configuration) i 19/12/2021 r C 2 PU-Team, Observatoire de Nice 19

The LHIRES-III 19/12/2021 C 2 PU-Team, Observatoire de Nice 20

The LHIRES-III 19/12/2021 C 2 PU-Team, Observatoire de Nice 20

The LHIRES-III F/12. 5 input beam from the telescope Micrometric screw (to tilt the

The LHIRES-III F/12. 5 input beam from the telescope Micrometric screw (to tilt the gating) Diffraction blazed grating) Guiding camera Bending mirror Focuser for the guiding camera Collimator / camera optics Slit environment Science camera Bending mirror 19/12/2021 C 2 PU-Team, Observatoire de Nice 21

The LHIRES-III Guiding port F/12. 5 input port Bending mirror Focuser for the guiding

The LHIRES-III Guiding port F/12. 5 input port Bending mirror Focuser for the guiding camera Slit environment Science port Micrometric screw (to tilt the gating) Diffraction blazed grating) 19/12/2021 Bending mirror Collimator / camera optics C 2 PU-Team, Observatoire de Nice 22

The LHIRES-III 19/12/2021 C 2 PU-Team, Observatoire de Nice 23

The LHIRES-III 19/12/2021 C 2 PU-Team, Observatoire de Nice 23

The slit environment Bending flat mirror Input beam (from telescope) Output port focusing optics

The slit environment Bending flat mirror Input beam (from telescope) Output port focusing optics Guiding output port Input slit Slit environment 19/12/2021 C 2 PU-Team, Observatoire de Nice 24

The slit environment Active slit 15 m slit 35 m slit 19 m slit

The slit environment Active slit 15 m slit 35 m slit 19 m slit 25 m slit Optically polished component: MUST HE HANDELED WITH CARE 19/12/2021 C 2 PU-Team, Observatoire de Nice 25

The calibration lamps • Spectral calibration lamp: a small glass bulb filled with low

The calibration lamps • Spectral calibration lamp: a small glass bulb filled with low pressure gases, producing strong and well-defined emission lines when an electric current passes through. Example Neon-Argon. Goal: determine the pixel-wavelength relationship. • Flat calibration lamp: A Tungsten filament bulb producing a “black body” continuous spectrum. Goal: determine the overall photometric throughput, pixel by pixel. Spectral calibration switch Flat calibration switch Power supply plug 19/12/2021 C 2 PU-Team, Observatoire de Nice 26

The Neon-Argon spectrum 19/12/2021 C 2 PU-Team, Observatoire de Nice 27

The Neon-Argon spectrum 19/12/2021 C 2 PU-Team, Observatoire de Nice 27

The diffraction ratings Protection frame Active grating surface Tilt axis Available gratings: • •

The diffraction ratings Protection frame Active grating surface Tilt axis Available gratings: • • • Housing 150 gr/mm 300 gr/mm 2400 gr/mm High precision optical component: MUST HE HANDELED WITH EXTREME CARE NO FINGER PRINTS ! 19/12/2021 C 2 PU-Team, Observatoire de Nice 28

The micrometric screw Micrometric screw How to read the micrometric screw : Value =

The micrometric screw Micrometric screw How to read the micrometric screw : Value = 23. 5+0. 34 = 23. 84 Drum tick mark in front of the fixed index : 34 Last visible mark: 23. 5 Active grating surface Fixed tilt axis 19/12/2021 Integer tick marks C 2 PU-Team, Observatoire de Nice 45 40 35 30 25 20 15 10 5 0 Fixed index Half-integer tick marks 29

Configurations Available gratings: Available slits: • • 150 gr/mm 300 gr/mm 2400 gr/mm 15

Configurations Available gratings: Available slits: • • 150 gr/mm 300 gr/mm 2400 gr/mm 15 microns 19 microns 23 microns 35 microns Spectral resolution @ 589 nm 15 m 19 m 23 m 35 m 150 gr/mm 1179 931 769 505 300 gr/mm 2365 1867 1543 1014 2400 gr/mm 26644 21034 17376 11419 Slit Grating 19/12/2021 C 2 PU-Team, Observatoire de Nice 30

Spectral range, spectral scale Spectral range accessible around 589 nm on a single image,

Spectral range, spectral scale Spectral range accessible around 589 nm on a single image, and spectral scale. Science camera: SBIG ST 402 19/12/2021 Grating Spectral range Spectral scale 150 gr/mm 230 nm 0. 30 nm/pix 300 gr/mm 110 nm 0. 15 nm/pix 2400 gr/mm 10 nm 0. 013 nm/pix C 2 PU-Team, Observatoire de Nice 31

Sample spectra The Hydrogen H line in the solar spectrum (LHIRES-III + 2400 gr/mm)

Sample spectra The Hydrogen H line in the solar spectrum (LHIRES-III + 2400 gr/mm) 19/12/2021 32

Sample spectra The Sodium D 1 and D 2 lines in the solar spectrum

Sample spectra The Sodium D 1 and D 2 lines in the solar spectrum (LHIRES-III + 2400 gr/mm) 19/12/2021 33

Sample spectra The Magnesium triplet in the solar spectrum (LHIRES-III + 2400 gr/mm) 19/12/2021

Sample spectra The Magnesium triplet in the solar spectrum (LHIRES-III + 2400 gr/mm) 19/12/2021 34

Sample spectra The Hydrogen H line in Saturn’s spectrum (LHIRES-III + 2400 gr/mm) The

Sample spectra The Hydrogen H line in Saturn’s spectrum (LHIRES-III + 2400 gr/mm) The lines are tilted by the planet’s surface rotation (Doppler effect) 19/12/2021 35

Methodology Observing session = + observing run 1 + observing run 2 + observing

Methodology Observing session = + observing run 1 + observing run 2 + observing run 3 +. . . + bias images + dark images Observing run = A self-contained set of spectral images with THE SAME CONFIGURATION and THE SAME SCIENCE TARGET. It should include: + Flat field spectral images (Tungsten bulb) + Calibration spectral images (Ne-Ar discharge tube) + Reference star spectral images (with known spectrum) + Flat field spectral images (Tungsten bulb) + Calibration spectral images (Ne-Ar discharge tube) + Science star spectral images (with known spectrum) + 19/12/2021 36

Methodology Rules for a good observing sessions: • Organize the session so as to

Methodology Rules for a good observing sessions: • Organize the session so as to minimize the grating changes. • Maintain the log file (see template) accurately, including UT timestamps before and after any group of similar frames, and before and after any hardware change (grating, micrometer). • Minimal working group: two persons (one person for log file and one for telescope/camera operation). • Do flat field and spectral calibration frames before any group of science frames (reference star or target). • Do reference star spectra only if absolute spectro-photometric calibration is needed. • Groups of science frames should not last more than 10 minutes. • Don’t forget to specify the type of frame (Flat, Callib, Science) to the acquisition software (it can’t guess). 19/12/2021 37

Observing log FILE HEADER: LHIRES-III OBSERVING LOG Date : Observers : Telescope : Instrument

Observing log FILE HEADER: LHIRES-III OBSERVING LOG Date : Observers : Telescope : Instrument : Science camera: Guiding camera: 2017/02/15 Jean DUPONT, Michel DUPOND. Epsilon@C 2 PU (OCA) LHIRES-IIIa SBIG ST 402 FW i. Nova PLB-Mx OBSERVING RUN NUMBER 01 -------------------. . -------------------------------- OBSERVING RUN NUMBER 02 -------------------. . -------------------------------- 19/12/2021 38

Observing log OBSERVING RUNS: OBSERVING RUN NUMBER 01 -------------------Target : Reference star : Grating

Observing log OBSERVING RUNS: OBSERVING RUN NUMBER 01 -------------------Target : Reference star : Grating : Micrometer : Central wavelength : Telescope on target: Jupiter Vega 150 tr/mm 03. 16 mm 656. 3 nm 22: 30: 00 UT 22: 30 UT 05 Tungsten flat frames. Exp=0001 s 000 22: 30: 50 UT 05 Argon-Neon calibration frames. Exp=0000 s 100 22: 31: 00 UT 10 science frames on Ref. star Exp=0000 s 500 22: 32: 00 UT 05 Tungsten flat frames. Exp=0001 s 000 22: 30 UT 05 Argon-Neon calibration frames. Exp=0000 s 100 22: 33: 10 UT 10 science frames on target. Exp=0000 s 500. . . 22: 35: 50 UT -------------------------------- 19/12/2021 39