Validation and diagnostics tools used in countries Maria

  • Slides: 31
Download presentation
Validation and diagnostics tools used in countries Maria Derkova & Neva Pristov HIRLAM-ALADIN workshop

Validation and diagnostics tools used in countries Maria Derkova & Neva Pristov HIRLAM-ALADIN workshop on physics and diagnostics, Oslo, 12 -13/12/2005

ALADIN validation tools ALADIN has specific output file format (FA), containing both spectral and

ALADIN validation tools ALADIN has specific output file format (FA), containing both spectral and gridpoint fields • internal tools (available via/during model execution): – fullpos – movie – echkevo • external tools: – – frodo, edf ecto pseudo. TEMPs ASCS • ALADIN verification project comment: usually these tools have common software basis, but visualisation part adapted by each NMS

FULLPOS • the post-processing package - our main diagnostic tool • consistent with model

FULLPOS • the post-processing package - our main diagnostic tool • consistent with model equations (physics), interpolations, constants, climatology etc. • allows transformation to various – levels (p, z, PV, θ, model) – domains & grids (gauss, model, latlon, lelam) – multiple fields • available in-line or off-line

FULLPOS NORMS • • available in the output listing output frequency controled by namelists

FULLPOS NORMS • • available in the output listing output frequency controled by namelists • during integration: SPECTRAL NORMS - SURFACE PRESSURE 0. 115013153860930 E+02 OROGRAPHY 0. 359236075962300 E+04 LEV VORTICITY DIVERGENCE TEMPERATURE HUMIDITY KINETIC ENERGY AVE 0. 590326020073889 E-04 0. 324345455324753 E-04 0. 246393827139165 E+03 0. 137562159965699 E-02 0. 115190052015067 E+03 • specific to fullpos FULL-POS GPNORMS SURFNEBUL. TOTALE/SHMU CLSVENT. ZONAL /SHMU CLSVENT. MERIDIEN/SHMU CLSTEMPERATURE /SHMU CLSMINI. TEMPERAT/SHMU CLSMAXI. TEMPERAT/SHMU P 85000 HUMI_RELAT/SHMU P 50000 VITESSE_VE/SHMU H 00900 THETA_P_W /SHMU • : : : : : AVERAGE 0. 478621864507254 E+00 0. 341629148922581 E+00 -. 147638570158226 E+01 0. 278541842802290 E+03 0. 278422883357361 E+03 0. 278667398114389 E+03 0. 688819635343745 E+00 0. 332028473905285 E-01 0. 276750679219078 E+03 MINIMUM 0. 00000000 E+00 -. 136312375001790 E+02 -. 181590558251937 E+02 0. 257494067681197 E+03 0. 257322981260511 E+03 0. 257495090950034 E+03 0. 124683427694804 E+00 -. 434310667219441 E+01 0. 267592366517514 E+03 MAXIMUM 0. 999759213216640 E+00 0. 120025700924380 E+02 0. 126187709690653 E+02 0. 295056541570276 E+03 0. 295315893483086 E+03 0. 100064597246694 E+01 0. 874949383087379 E+01 0. 287697023754120 E+03 check the time evolution LEV VORTICITY DIVERGENCE TEMPERATURE HUMIDITY KINETIC ENERGY 18 H AVE 0. 590326020073889 E-04 0. 324345455324753 E-04 0. 246393827139165 E+03 0. 137562159965699 E-02 0. 115190052015067 E+03 19 H AVE 0. 590277752275588 E-04 0. 325598069681603 E-04 0. 246387724695265 E+03 0. 137399680684076 E-02 0. 114905545476164 E+03 20 H AVE 0. 590252626199911 E-04 0. 326833214841227 E-04 0. 246381813657302 E+03 0. 137235481252630 E-02 0. 114623533467978 E+03 • < > compare/validate different runs SURFRESERV. GLACE/FRAN : 0. 162770785915803 E-04 0. 00000000 E+00 0. 800849068831364 E-01 : 0. 162770877130463 E-04 0. 00000000 E+00 0. 800849293445569 E-01

MOVIE • pseudosatellite image simulated by thermal radiation at the model top • local

MOVIE • pseudosatellite image simulated by thermal radiation at the model top • local file fort. 91 is produced during model integration via namelist switches &NAMPPC LMOVIE=. TRUE. , LMOVPH=. TRUE. , &NAMCT 0 NFRISP=2, (frequency of animation events in time-steps) • the fort. 91 file is read by HARPE program which creates ppm; then mpeg movie is created from ppm files with mpeg_encode • HARPE program (author P. LAMBOLEY) is controlled via namelist: • max size for pictures (pixels) • number of pictures to generate, frequency • picture files format : RIG, RAW, PGM, PPM, GIF, ASC or BIN • projection: Cylindrique, Stereo polaire, Orthographique, Aladin • selection of colors (palette)…

MOVIE: example in grey color (by N. Pristov)

MOVIE: example in grey color (by N. Pristov)

ECHKEVO check/diagnostics of the gridpoint evolution • enables to print out (into external FA

ECHKEVO check/diagnostics of the gridpoint evolution • enables to print out (into external FA file ICMSH${EXPN}CHKOUT 2) the values of defined model variables at predefined points • &NAMCHK – LECHKEVO=. TRUE. , – NFRQCHK, NGPCHK, NXCHK(i), NYCHK(i), NFLDCHK(j) • needs external program to get ascii output (fort. 70) • visualisation (by e. g. xmgrace) • does it work in CY 28 T 3?

ECHKEVO – example 1 usage of digital filter time evolution of the surface pressure,

ECHKEVO – example 1 usage of digital filter time evolution of the surface pressure, point [40, 60]

ECHKEVO – example 2 work of M. Tudor: stability tests PBL height diagnosed via

ECHKEVO – example 2 work of M. Tudor: stability tests PBL height diagnosed via Ri

ECHKEVO – example 2 Linear instability tests – acpluie (by M. Tudor) reference test

ECHKEVO – example 2 Linear instability tests – acpluie (by M. Tudor) reference test The pictures show time evolution of temperature on the two lowest model levels and the difference between them for one chosen point. The values for each time-step are presented, x-axis represents hours of the integration and y axis temperature in Kelvin.

ECHKEVO – example 2 (cont) Linear instability tests - acpluie • EVAP=0, FONT=0, evaporation

ECHKEVO – example 2 (cont) Linear instability tests - acpluie • EVAP=0, FONT=0, evaporation and melting were switched off – fibrillations completely disappeared • FONT=0, melting switched off, fibrillations occurred with the same intensity as in basic test • EVAP=0, evaporation switched off, fibrillations completely disappeared

ECHKEVO – example 3 (cont) Linear instability tests - acpluie stability hidden in the

ECHKEVO – example 3 (cont) Linear instability tests - acpluie stability hidden in the evaporation of snow computations of the acpluie => decreasing the ratio of the speed of evaporation of precipitation ice/water REVGSL (80=> 4 -15)

Comparison of single point values to measurements (by M. Tudor) Comparison of the evolution

Comparison of single point values to measurements (by M. Tudor) Comparison of the evolution for 00 UTC with measured data operational radiation NER (right). modelled 2 m temperature run on 14 th December 2004 from synoptic station with scheme (left) and including reference rand max rm+new RH XR cloud random old RH

PALADIN • Portable Auxillary Library And Development tools for alad. IN • package by

PALADIN • Portable Auxillary Library And Development tools for alad. IN • package by J. -D. Gril • portable version of fa/lfi and eggx + tools modules, makefiles • contains various utilities (frodo, edf, ecto, pseudo, domolalo, coneo) • http: //www. cnrm. meteo. fr/aladin/concept/tools. html

Tools to check the FA file • FRODO checks the header of the file

Tools to check the FA file • FRODO checks the header of the file – – • geometry, dates, vertical levels, fields usage: FRODO FA_file EDF (Edit Field) prints out the values at the gridpoints (even of spectral fields!) – – – LON control via namelist (fields, levels, zoom…) usage: EDF namelist FA_file(s) example of output: LAT SURFIND. TERREMER -10. 07 44. 95 -9. 92 44. 97 -9. 76 44. 99. . . . – 0. 0000000 SPECSURFGEOPOTEN S 022 TEMPERATURE -13. 1869965 21. 8817933 -8. 8118075 279. 9895866 279. 9214952 279. 8732009 http: //www. cnrm. meteo. fr/aladin/concept/doc. EDF. v 1. 10

ECTOplasme n k m • computes spectral energy for the effective wave number over

ECTOplasme n k m • computes spectral energy for the effective wave number over the slices of the ellipse • control via namelist (variables, levels, wave numbers) • usage: ecto namelist FA_file(s) • output is the ascii file [x, y 1 (y 2, y 3. . . )] to be visualised (e. g. by xmgrace) • http: //www. cnrm. meteo. fr/aladin/concept/doc. ECTO. v 1. 10

ECTOplasme – examples (by F. Vana – SLHD)

ECTOplasme – examples (by F. Vana – SLHD)

pseudo • production of the parts B and D of the prognostic TEMP (pseudo.

pseudo • production of the parts B and D of the prognostic TEMP (pseudo. TEMP, ps. TEMP) messages for predefined set of points (file GEOIN) • usage: pseudo list_of_files • example: IIBB SKBRA 56069 98000 99482 10172 17987 01771 00981 02806 11979 02808 22974 03610 33965 03810 44953 03608 55939 03205 66922 02604 77902 01805 88880 01006 99856 00108 11830 01709 22802 03310 33773 05112 44742 06514 55710 08117 66677 10122 77643 12727 88608 15728 99572 18726 11536 21726 22500 25128 33463 29131 44427 33736 55391 38739 66355 44542 77320 51339 88286 57939 99253 58161 11220 54575 22189 53195 33159 54199 44131 56791 55105 59387 21212 00981 02506 11979 02507 22974 03009 33965 04011 44953 05011 55939 05512 66922 06012 77902 07012 88880 07511 99856 08010 11830 08509 22802 09509 33773 10509 44742 12510 55710 14012 66677 15014 77643 15514 88608 16015 99572 17018 11536 18023 22500 18529 33463 18536 44427 19042 55391 19047 66355 20054 77320 20062 88286 21067 99253 22058 11220 23041 22189 23032 33159 24030 44131 24529 55105 25531= IIDD SKBRA 5606/ 98000 99482 10172 17987 01771 11812 60786 22589 62386 33389 63786 44212 63791 55050 367// 21212 11812 26532 22589 27537 33389 28541 44212 28055 55050 27157= • further processing usually based on HRID program: – – time/z cross-section vertical and time interpolations computation of additional derived energy, thermodynamics and stability parameters visualisation (originally NCAR-based) • advantage if HRID processing/visualisation is used also for TEMP

ps. TEMP & HRID visualisation: cold front passage (by J. Masek)

ps. TEMP & HRID visualisation: cold front passage (by J. Masek)

ps. TEMP &HRID visualisation: validation of new model version (J. Masek & M. Derkova)

ps. TEMP &HRID visualisation: validation of new model version (J. Masek & M. Derkova) ps. TEMP: old_oper station Vienna 19/03/2005 ps. TEMP: new_oper TEMP

ps. TEMP &HRID visualisation: validation of new model version (J. Masek & M. Derkova)

ps. TEMP &HRID visualisation: validation of new model version (J. Masek & M. Derkova) ps. TEMP: old_oper station Vienna 19/03/2005 ps. TEMP: new_oper TEMP

ASCS ALADIN VERTICAL (SPACE) CROSS SECTION • needs input postprocessed to model levels, containing

ASCS ALADIN VERTICAL (SPACE) CROSS SECTION • needs input postprocessed to model levels, containing surface geopotential, the model levels geopotential, plus any other field on model levels. All these fields should be in grid-points, i. e. special fullpos has to be run prior to ASCS • ASCS plots these fields/variables on the vertical plane between two selected geographical points (portion of the circle on the geographical sphere) • driven by namelist with possible tcl/tk interface • (originally) based on ncar graphics

ASCS: example of bura wind event in Adriatic sea (by N. Pristov)

ASCS: example of bura wind event in Adriatic sea (by N. Pristov)

SLHD & case study of the false forecast of the Adriatic cyclone (by F.

SLHD & case study of the false forecast of the Adriatic cyclone (by F. Vana) SLHD OPER ANALYSIS

ASCS & case study of the false forecast of the Adriatic cyclone (by F.

ASCS & case study of the false forecast of the Adriatic cyclone (by F. Vana & A. Simon) ANALYSIS OPER SLHD

ASCS: 19/11/2004 case study of the High Tatras severe windstorm downslope wind (by A.

ASCS: 19/11/2004 case study of the High Tatras severe windstorm downslope wind (by A. Simon & J. Vivoda) oper 9 km 2. 5 km NH 2. 5 km

ALADIN Verification Project (AVP) seen as a tool for model validation • common ALADIN

ALADIN Verification Project (AVP) seen as a tool for model validation • common ALADIN project operated in Slovenia: ww. arso. gov. si/verification/ • data from operational models and parallel suites collected • client software installed at NMSs, data sent via email & stored in database • web user interface to plot the scores (predefined set of bulletins once per month planned) • currently in testing mode (performance problems)

AVP: example of possible usage ALADIN “EPS multimodel meteogram” • for selected station •

AVP: example of possible usage ALADIN “EPS multimodel meteogram” • for selected station • for selected variables

AVP: example of various models forecasts

AVP: example of various models forecasts