VADOSE ZONE INTERACTION WITH HYPORHEIC ZONE NITROGEN CYCLING

  • Slides: 36
Download presentation
VADOSE ZONE INTERACTION WITH HYPORHEIC ZONE NITROGEN CYCLING Doug Higbee BAE 558 – Fluid

VADOSE ZONE INTERACTION WITH HYPORHEIC ZONE NITROGEN CYCLING Doug Higbee BAE 558 – Fluid Mechanics of Porous Materials May 8, 2009

 The Hyporheic Zone is “… that part of the ground water/surface water continuum

The Hyporheic Zone is “… that part of the ground water/surface water continuum containing water originating both from the neighboring aquifer and from the river channel. ” Butturini, A. , Bernal, S. , Sabater, . S. , and Sabater, F. , 2002. The influence of riparian-hyporheic zone on the bydrological responses in an intermittent stream. Hydrology and Earth System Sciences, Volume 6(3), pp 515 -525. Introduction

Introduction

Introduction

Introduction

Introduction

 Geologic Zone Compartments of the Riparian ◦ Vadose Zone: portion that lies above

Geologic Zone Compartments of the Riparian ◦ Vadose Zone: portion that lies above the annual water table, characterized by variable saturation ◦ Hyporheic Zone: portion that lies below annual water table, characterized by saturated flow Introduction

 Riparian Ecosystem ◦ Vegetative growth ◦ Rich soil deposits ◦ Water availability ◦

Riparian Ecosystem ◦ Vegetative growth ◦ Rich soil deposits ◦ Water availability ◦ Benthic organisms ◦ Wildlife habitat ◦ Water quality ◦ Stream biota ESA (i. e. , bull trout) Introduction

 Presentation Content ◦ Nitrogen cycle ◦ Delineation of the hyporheic zone ◦ Fluid

Presentation Content ◦ Nitrogen cycle ◦ Delineation of the hyporheic zone ◦ Fluid mechanics of the hyporheic zone ◦ Watershed hydrology and the hyporheic zone ◦ Nitrogen cycling in the hyporheic zone Introduction

Nitrogen Cycle

Nitrogen Cycle

 Benefits of Nitrogen ◦ Essential element for all plants and animals ◦ Creation

Benefits of Nitrogen ◦ Essential element for all plants and animals ◦ Creation of proteins ◦ Amino acids (DNA & RNA) ◦ Plant respiration ◦ All nitrogen obtained by animals can be traced back to the eating of plants at some stage of the food chain. Nitrogen Cycle

 Nitrogen Fixation ◦ Necessary to free up nitrogen from gas form for use

Nitrogen Fixation ◦ Necessary to free up nitrogen from gas form for use by organisms. Fixation through: Lightning Nitrogen fixing bacteria § Through the process of mineralization (ammonification) nitrogen is also converted from organic nitrogen to: § Ammonium (NH 4 -) § Nitrite (NO 2 -) § Nitrate (NO 3 -) Nitrogen Cycle

 Nitrification: nitrates Conversion of ammonia to ◦ Primarily by soil bacteria ◦ Also

Nitrification: nitrates Conversion of ammonia to ◦ Primarily by soil bacteria ◦ Also by bacteria in hyporheic zone ◦ Aerobic environment ◦ nitrosomonas ◦ nitrobacter Nitrogen Cycle

 Denitrification: reduction of nitrates to nitrogen gas (N 2) ◦ Anaerobic environment ◦

Denitrification: reduction of nitrates to nitrogen gas (N 2) ◦ Anaerobic environment ◦ Deeper regions of the hyporheic zone ◦ Pseudomonas ◦ Clostridium Nitrogen Cycle

 Boundary – surface water/ground water ◦ Does not necessarily extend to outer riparian

Boundary – surface water/ground water ◦ Does not necessarily extend to outer riparian zone Oxygenated surface water ◦ Benthic habitat extending below vegetated area Extents ◦ Can extend hundreds of meters from the stream bank, and greater. ◦ Depending on fluvial geomorphology and surrounding topography Field methods ◦ Shallow wells Monitor water chemistry and gradients ◦ Tracer injection Monitor with time domain reflectometry or groundpenetrating radar Hyporheic Zone Delineation

 Monitoring Wells ◦ Dissolved Oxygen (DO) ◦ Dissolved Organic Carbon (DOC) ◦ Groundwater

Monitoring Wells ◦ Dissolved Oxygen (DO) ◦ Dissolved Organic Carbon (DOC) ◦ Groundwater gradient determination Hyporheic Zone Delineation

 Tracer Injection Hyporheic Zone Delineation

Tracer Injection Hyporheic Zone Delineation

� Tracer Injection � Monitoring with Ground-Penetrating Radar John Bradford (Boise State University) Michael

� Tracer Injection � Monitoring with Ground-Penetrating Radar John Bradford (Boise State University) Michael Gooseff (Penn State University) Jim Mc. Namara (Boise State University) http: //water. engr. psu. edu/gooseff/gpr_hz_proj. html Hyporheic Zone Delineation

 Tracer Injection Piezometers ◦ 20 cm depth ◦ 40 cm depth Hyporheic Zone

Tracer Injection Piezometers ◦ 20 cm depth ◦ 40 cm depth Hyporheic Zone Delineation

 Tracer Injection Hyporheic Zone Deliniation

Tracer Injection Hyporheic Zone Deliniation

 Tracer Injection Hyporheic Zone Delineation

Tracer Injection Hyporheic Zone Delineation

 Tracer Injection Hyporheic Zone Delineation

Tracer Injection Hyporheic Zone Delineation

 Potentiometric surface maps ◦ Ground water elevation ◦ Horizontal direction of ground water

Potentiometric surface maps ◦ Ground water elevation ◦ Horizontal direction of ground water flow ◦ Useful for Qualitative flux analysis ◦ Not useful for quantifying flux Hyporheic Zone Delineation

Flow/flux determination • Fluvial geomorphology • Typically for Saturated Flow • o • Directional

Flow/flux determination • Fluvial geomorphology • Typically for Saturated Flow • o • Directional o o • Darcy’s Law: q=K(dh/dx) Hyporheic – parallel to stream flow Vadose/regional groundwater – perpendicular to stream flow Residence Time Hyporheic Zone Fluid Mechanics

 Fluvial Geomorphology Hyporheic Zone Fluid Mechanics

Fluvial Geomorphology Hyporheic Zone Fluid Mechanics

 Stream structures and sinuosity Hyporheic Zone Fluid Mechanics

Stream structures and sinuosity Hyporheic Zone Fluid Mechanics

 Degree of saturation ◦ Hyporheic saturated flow/non-saturated flow Hyporheic Zone Fluid Mechanics

Degree of saturation ◦ Hyporheic saturated flow/non-saturated flow Hyporheic Zone Fluid Mechanics

 Residence Time ◦ Average linear velocity V=(K/n)(dh/dl) ◦ Hyporheic zone deliniation Operational definition,

Residence Time ◦ Average linear velocity V=(K/n)(dh/dl) ◦ Hyporheic zone deliniation Operational definition, ◦ open to interpretation Hours -> Days -> Weeks Hyporheic Zone Fluid Mechanics

 Hydrologic Cycles ◦ surface water ◦ level fluctuation flux gradients Dynamic groundwater surface

Hydrologic Cycles ◦ surface water ◦ level fluctuation flux gradients Dynamic groundwater surface water interaction Watershed Hydrology and the Hyporheic Zone

Ephemeral Streams Watershed Hydrology and the Hyporheic Zone

Ephemeral Streams Watershed Hydrology and the Hyporheic Zone

 Ephemeral Streams Watershed Hydrology and the Hyporheic Zone

Ephemeral Streams Watershed Hydrology and the Hyporheic Zone

 Riparian zone hydraulic recharge ◦ Vadose zone Seasonal recharge (longer) ◦ Hyporheic zone

Riparian zone hydraulic recharge ◦ Vadose zone Seasonal recharge (longer) ◦ Hyporheic zone Flood frequency (shorter) Watershed Hydrology and the Hyporheic Zone

 Nitrogen cycle in the hyporheic zone is directly affected by hydraulics and watershed

Nitrogen cycle in the hyporheic zone is directly affected by hydraulics and watershed hydrology Degree of Saturation affects transport Hydraulics affect residence time Hyporheic exchange◦ Hyporheic zones can be a source or sink of NH 4 Nitrogen Cycling in the Hyporheic Zone

Basic diagram of the nitrogen cycle. Nitrogen Cycling in the Hyporheic Zone

Basic diagram of the nitrogen cycle. Nitrogen Cycling in the Hyporheic Zone

 Dissolved Oxygen (DO) rich environment enables nitrification (aerobic conditions) ◦ Continuous mixing of

Dissolved Oxygen (DO) rich environment enables nitrification (aerobic conditions) ◦ Continuous mixing of surface water and groundwater Dissolved Organic Carbon (DOC) rich environment enables denitrification (anaerobic conditions) ◦ Flood deposits - colloidal DOC transported through porous media ◦ Typically the most common source of electrons Nitrogen Cycling in the Hyporheic Zone

 Reduced mineral phases also contribute to denitrification (Mn 2+, Fe 2+, S 2

Reduced mineral phases also contribute to denitrification (Mn 2+, Fe 2+, S 2 -) Clay particles can also be a significant source for denitrification ◦ p. H controls this process ◦ Sorption-desorption Nitrogen Cycling in the Hyporheic Zone

Nitrogen Cycling in the Hyporheic Zone

Nitrogen Cycling in the Hyporheic Zone

 The hyporheic zone can potentially play a significant role in the removal of

The hyporheic zone can potentially play a significant role in the removal of nitrogen from streams and rivers. Understanding the factors that influence gradients and hydraulics is essential for analysis. Calculations of nitrogen load from regional ground water to a river that do not account “…for hyporheic zone chemical and biological transformations, could result in significant errors. ” ◦ Hinkle, S. R. , Duff, J. H. , Triska, F. J. , Laenen, A. , Gates, E. B. , Bencala, K. E. , Wentz, D. A. , and Silva, S. R. , 2001. Linking hyporheic flow and nitrogen cycling near the Willamette River – a large river in Oregon, USA, Journal of Hydrology, Volume 244, Issues 3 -4, pp 157 -180. Conclusion