UVC Airborne Holographic Lidar Transceiver Marc Hammond David

  • Slides: 13
Download presentation
UVC Airborne Holographic Lidar Transceiver Marc Hammond, David Huish, Tom Wilkerson, Scott Cornelsen Space

UVC Airborne Holographic Lidar Transceiver Marc Hammond, David Huish, Tom Wilkerson, Scott Cornelsen Space Dynamics Laboratory Utah State University 435 -797 -9611 [email protected] usu. edu presentation for the Wind Lidar Working Group Sedona, AZ January 27 -29, 2004 Research supported by NPOESS/IPO, NASA, and SDL © 2004

Outline • High altitude aircraft : ER-2, Proteus • Technology fusion basis (DLTA-M) HARLIE

Outline • High altitude aircraft : ER-2, Proteus • Technology fusion basis (DLTA-M) HARLIE (Schwemmer), GLOW (Gentry) • • Performance UV– Cornerstone (UVC) transceiver UVC design progress at SDL Conclusion

Fusion of Two NASA Lidar Technologies HARLIE Doppler Lidar Technology Accelerator • Holographic scan

Fusion of Two NASA Lidar Technologies HARLIE Doppler Lidar Technology Accelerator • Holographic scan Lidar • 1064 nm (present) • Aerosol / cloud returns as function of azimuth and time • “Cross beam” winds GLOW • Doppler interferometer (“double-edge” etalon) • 355 nm / 1064 nm Lidar • Line-of-sight winds from aerosol returns • LOS winds (molecular) from clear air DLTA • • Holographic scan @ 355 nm Multi-channel transceiver LOS winds / Cross beam winds Aerosol / Cloud morphology Airborne and ruggedized Platforms: ER-2 / Proteus Cal / Val for space-borne wind lidar

DLTA Direct Detection Doppler Lidar Instrument Layout Non-Doppler Detector Laser Transmission Laser Rotating hologram

DLTA Direct Detection Doppler Lidar Instrument Layout Non-Doppler Detector Laser Transmission Laser Rotating hologram

Conical scans for high altitude HOE lidar horizon nadir Nadir-45° sweep ( transonic) Tip-tilt

Conical scans for high altitude HOE lidar horizon nadir Nadir-45° sweep ( transonic) Tip-tilt mode

Expected performance-DLTA (nadir) Altitude 20 km

Expected performance-DLTA (nadir) Altitude 20 km

SDL Transceiver Design UVC-16: folded path, 16 in. hologram, 355 nm Length, diam. 30

SDL Transceiver Design UVC-16: folded path, 16 in. hologram, 355 nm Length, diam. 30 in. Weight 187 lbs. Optical eff. 6 % 30 RPM Pacific Scientific motor Contitech timing belt ASRC data system Hamamatsu PMT

UVC-16 Performance Photon returns per pulse Horizontal path Clear air Density 2. 5 1019

UVC-16 Performance Photon returns per pulse Horizontal path Clear air Density 2. 5 1019 cm-3 Range gate : Pulse energy 1 m. J 355 nm Telescope diam. 40. 6 cm Obstruction diam 4. 6 cm Optical efficiency 6 %

UVC – 12 Compact Transceiver Weight 107 lbs. Length, diam. 24“ 3 -Rod truss

UVC – 12 Compact Transceiver Weight 107 lbs. Length, diam. 24“ 3 -Rod truss Convex secondary External detector Optical eff. 5% Other details similar to UVC-16

UVC - 12 Optical Return Path View from Detector End

UVC - 12 Optical Return Path View from Detector End

Finite Element Analysis for UVC-12 Displacement Stress

Finite Element Analysis for UVC-12 Displacement Stress

Conclusion • UVC is a compact, rugged transceiver for fusion of Holographic and Direct

Conclusion • UVC is a compact, rugged transceiver for fusion of Holographic and Direct Detcction Doppler Lidar • Thermal and Finite Element Analysis validate the design for flight in high altitude aircraft environment • Next step: Vibration Analysis of UVC-16 and UVC-12 • Design and fabrication of optical instrumentation for aircraft and satellites a major activity at Space Dynamics Laboratory • Next design direction: Composite construction for greater strength and savings in weight. Composite technology is a focus area for SDL and Utah State University