Using Matrices toto Transform Using Matrices Transform 4

  • Slides: 29
Download presentation
Using Matrices toto Transform Using Matrices Transform 4 -3 Geometric Figures Warm Up Lesson

Using Matrices toto Transform Using Matrices Transform 4 -3 Geometric Figures Warm Up Lesson Presentation Lesson Quiz Holt Algebra 22

4 -3 Using Matrices to Transform Geometric Figures Warm Up Perform the indicated operation.

4 -3 Using Matrices to Transform Geometric Figures Warm Up Perform the indicated operation. 1. 2. 3. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Objective Use matrices to transform a

4 -3 Using Matrices to Transform Geometric Figures Objective Use matrices to transform a plane figure. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Vocabulary translation matrix reflection matrix rotation

4 -3 Using Matrices to Transform Geometric Figures Vocabulary translation matrix reflection matrix rotation matrix Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures You can describe the position, shape,

4 -3 Using Matrices to Transform Geometric Figures You can describe the position, shape, and size of a polygon on a coordinate plane by naming the ordered pairs that define its vertices. The coordinates of ΔABC below are A (– 2, – 1), B (0, 3), and C (1, – 2). You can also define ΔABC by a matrix: x-coordinates y-coordinates Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures A translation matrix is a matrix

4 -3 Using Matrices to Transform Geometric Figures A translation matrix is a matrix used to translate coordinates on the coordinate plane. The matrix sum of a preimage and a translation matrix gives the coordinates of the translated image. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Reading Math The prefix pre- means

4 -3 Using Matrices to Transform Geometric Figures Reading Math The prefix pre- means “before, ” so the preimage is the original figure before any transformations are applied. The image is the resulting figure after a transformation. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 1: Using Matrices to Translate

4 -3 Using Matrices to Transform Geometric Figures Example 1: Using Matrices to Translate a Figure Translate ΔABC with coordinates A(– 2, 1), B(3, 2), and C(0, – 3), 3 units left and 4 units up. Find the coordinates of the vertices of the image, and graph. The translation matrix will have – 3 in all entries in row 1 and 4 in all entries in row 2. Holt Algebra 2 x-coordinates y-coordinates

4 -3 Using Matrices to Transform Geometric Figures Example 1 Continued A'B'C', the image

4 -3 Using Matrices to Transform Geometric Figures Example 1 Continued A'B'C', the image of ABC, has coordinates A'(– 5, 5), B'(0, 6), and C'(– 3, 1). Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 1 Translate

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 1 Translate ΔGHJ with coordinates G(2, 4), H(3, 1), and J(1, – 1) 3 units right and 1 unit down. Find the coordinates of the vertices of the image and graph. The translation matrix will have 3 in all entries in row 1 and – 1 in all entries in row 2. Holt Algebra 2 x-coordinates y-coordinates

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 1 Continued

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 1 Continued G'H'J', the image of GHJ, has coordinates G'(5, 3), H'(6, 0), and J'(4, – 2). Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures A dilation is a transformation that

4 -3 Using Matrices to Transform Geometric Figures A dilation is a transformation that scales—enlarges or reduces—the preimage, resulting in similar figures. Remember that for similar figures, the shape is the same but the size may be different. Angles are congruent, and side lengths are proportional. When the center of dilation is the origin, multiplying the coordinate matrix by a scalar gives the coordinates of the dilated image. In this lesson, all dilations assume that the origin is the center of dilation. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 2: Using Matrices to Enlarge

4 -3 Using Matrices to Transform Geometric Figures Example 2: Using Matrices to Enlarge a Figure Enlarge ΔABC with coordinates A(2, 3), B(1, – 2), and C(– 3, 1), by a factor of 2. Find the coordinates of the vertices of the image, and graph. Multiply each coordinate by 2 by multiplying each entry by 2. x-coordinates y-coordinates Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 2 Continued A'B'C', the image

4 -3 Using Matrices to Transform Geometric Figures Example 2 Continued A'B'C', the image of ABC, has coordinates A'(4, 6), B'(2, – 4), and C'(– 6, 2). Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 2 Enlarge

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 2 Enlarge ΔDEF with coordinates D(2, 3), E(5, 1), and F(– 2, – 7) a factor of. Find the coordinates of the vertices of the image, and graph. Multiply each coordinate by entry by. Holt Algebra 2 by multiplying each

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 2 Continued

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 2 Continued D'E'F', the image of DEF, has coordinates Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures A reflection matrix is a matrix

4 -3 Using Matrices to Transform Geometric Figures A reflection matrix is a matrix that creates a mirror image by reflecting each vertex over a specified line of symmetry. To reflect a figure across the y-axis, multiply by the coordinate matrix. This reverses the xcoordinates and keeps the y-coordinates unchanged. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Caution Matrix multiplication is not commutative.

4 -3 Using Matrices to Transform Geometric Figures Caution Matrix multiplication is not commutative. So be sure to keep the transformation matrix on the left! Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 3: Using Matrices to Reflect

4 -3 Using Matrices to Transform Geometric Figures Example 3: Using Matrices to Reflect a Figure Reflect ΔPQR with coordinates P(2, 2), Q(2, – 1), and R(4, 3) across the y-axis. Find the coordinates of the vertices of the image, and graph. Each x-coordinate is multiplied by – 1. Each y-coordinate is multiplied by 1. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 3 Continued The coordinates of

4 -3 Using Matrices to Transform Geometric Figures Example 3 Continued The coordinates of the vertices of the image are P'(– 2, 2), Q'(– 2, – 1), and R'(– 4, 3). Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 3 To

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 3 To reflect a figure across the x-axis, multiply by. Reflect ΔJKL with coordinates J(3, 4), K(4, 2), and L(1, – 2) across the x-axis. Find the coordinates of the vertices of the image and graph. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 3 The

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 3 The coordinates of the vertices of the image are J'(3, – 4), K'(4, – 2), L'(1, 2). Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures A rotation matrix is a matrix

4 -3 Using Matrices to Transform Geometric Figures A rotation matrix is a matrix used to rotate a figure. Example 4 gives several types of rotation matrices. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 4: Using Matrices to Rotate

4 -3 Using Matrices to Transform Geometric Figures Example 4: Using Matrices to Rotate a Figure Use each matrix to rotate polygon ABCD with coordinates A(0, 1), B(2, – 4), C(5, 1), and D(2, 3) about the origin. Graph and describe the image. A. The image A'B'C'D' is rotated 90° counterclockwise. B. The image A''B''C''D'' is rotated 90° clockwise. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 4 Continued Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Example 4 Continued Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 4 Use

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 4 Use Rotate ΔABC with coordinates A(0, 0), B(4, 0), and C(0, – 3) about the origin. Graph and describe the image. A'(0, 0), B'(-4, 0), C'(0, 3); the image is rotated 180°. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 4 Continued

4 -3 Using Matrices to Transform Geometric Figures Check It Out! Example 4 Continued Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Lesson Quiz Transform triangle PQR with

4 -3 Using Matrices to Transform Geometric Figures Lesson Quiz Transform triangle PQR with vertices P(– 1, – 1), Q(3, 1), R(0, 3). For each, show the matrix transformation and state the vertices of the image. 1. Translation 3 units to the left and 2 units up. 2. Dilation by a factor of 1. 5. 3. Reflection across the x-axis. 4. 90° rotation, clockwise. Holt Algebra 2

4 -3 Using Matrices to Transform Geometric Figures Lesson Quiz 1. 2. 3. Holt

4 -3 Using Matrices to Transform Geometric Figures Lesson Quiz 1. 2. 3. Holt Algebra 2 4.