UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS

  • Slides: 39
Download presentation
UNIVERSIDAD AUTONOMA DE CHIHUAHUA. FACULTAD DE CIENCIAS QUIMICAS. BIOLOGIA MOLECULAR. Replicación del ADN en

UNIVERSIDAD AUTONOMA DE CHIHUAHUA. FACULTAD DE CIENCIAS QUIMICAS. BIOLOGIA MOLECULAR. Replicación del ADN en Procariotas 3. 2. 1 JOSE ALFREDO SOTO ALONSO 212679

INDICE Mecanismos general Propiedades Replicacion en procariotas Mecanismo Maquinaria enzimatica Inicio, enlongacion, replisoma y

INDICE Mecanismos general Propiedades Replicacion en procariotas Mecanismo Maquinaria enzimatica Inicio, enlongacion, replisoma y terminacion Mecanismos de reparacion Replicacion de ADN in vitro

 Es el proceso en la cuál una molécula de ADN de doble hélice

Es el proceso en la cuál una molécula de ADN de doble hélice da lugar a otras dos moléculas de ADN con la misma secuencia de bases

 La división celular requiere de la duplicación del material genético mitosis meiosis mitosis

La división celular requiere de la duplicación del material genético mitosis meiosis mitosis

Mecanismo general La misma estructura del ADN sugirió un mecanismo de replicación de la

Mecanismo general La misma estructura del ADN sugirió un mecanismo de replicación de la información ◦ Cada hebra sirve como molde para replicar la complementaria

Propiedades La Replicación ocurre sólo una vez en cada ciclo celular y resulta esencial

Propiedades La Replicación ocurre sólo una vez en cada ciclo celular y resulta esencial en la duplicación de las cromátidas de los cromosomas.

 Semiconservativa: cada nueva molécula esta formada por una hebra parental y una recién

Semiconservativa: cada nueva molécula esta formada por una hebra parental y una recién sintetizada ◦ Experimentos de Meselson y Stahl

Ø Se utilizaron bacterias de Escherichia coli cultivadas en medio con isótopos de N

Ø Se utilizaron bacterias de Escherichia coli cultivadas en medio con isótopos de N (N 15 y N 14). Ø Se purificó ADN utilizando una gradiente de densidad (Cs. Cl)

 Bidireccional: Se da hacia ambos lados del sitio de inicio denominado origen de

Bidireccional: Se da hacia ambos lados del sitio de inicio denominado origen de replicación A cada lado de la burbuja de replicación se forma una horquilla de replicación

 Dirección de la síntesis: 5’ 3’

Dirección de la síntesis: 5’ 3’

 Semidiscontinua: Una de las hebras no puede ser sintetizada de continuo ◦ Consecuencia

Semidiscontinua: Una de las hebras no puede ser sintetizada de continuo ◦ Consecuencia de la direccionalidad

Replicación en procariotas

Replicación en procariotas

Mecanismo Inicio ◦ Reconocimiento de orígenes de replicación. ◦ Separación de hebras. ◦ Posicionamiento

Mecanismo Inicio ◦ Reconocimiento de orígenes de replicación. ◦ Separación de hebras. ◦ Posicionamiento de maquinaria transcripcional. Elongación ◦ Crecimiento bidireccional de las horquillas de replicación. ◦ Replicación semiconservativa, semidiscontinua, coordinada. Terminación ◦ Reconocimiento de señales de terminación. ◦ Desensamble de replisomas.

 ADN polimerasas: ◦ Pol III (replicasa) ◦ Pol IV y V Necesitan 3’

ADN polimerasas: ◦ Pol III (replicasa) ◦ Pol IV y V Necesitan 3’ OH libre

DNA POLIMERASA II Con actividad exonucleasa 3’ 5’ está involucrada en procesos de reparación

DNA POLIMERASA II Con actividad exonucleasa 3’ 5’ está involucrada en procesos de reparación de DNA frente a un daño térmico o por radiación. DNA POLIMERASA III Esta es la enzima que realiza el proceso replicativo, su función es la síntesis de DNA. También cuenta con actividad revisora, 3’ 5’

Maquinaria enzimática ADN polimerasas: Síntesis de ADN Primasas: Generación 3’OH libres Ligasas: Unión los

Maquinaria enzimática ADN polimerasas: Síntesis de ADN Primasas: Generación 3’OH libres Ligasas: Unión los fragmentos de Okazaki Helicasas: Separación de hebras Topoisomerasas: Mantenimiento del grado de superenrollamiento SSBs: Mantenimiento de simples hebras

Inicio Reconocimiento del origen y apertura de las hebras

Inicio Reconocimiento del origen y apertura de las hebras

Elongación Primasa: ◦ Sintetiza fragmentos de ARN (cebadores) que provean los 3’ OH libres

Elongación Primasa: ◦ Sintetiza fragmentos de ARN (cebadores) que provean los 3’ OH libres ◦ Puede comenzar sin necesidad de cebador

Replisoma

Replisoma

Terminación

Terminación

Mecanismos de reparación Las propias replicasas son capaces de reparar sus errores durante la

Mecanismos de reparación Las propias replicasas son capaces de reparar sus errores durante la elongación: ◦ actividad correctora de prueba (proofreading) ◦ Implica una actividad exonucleasa 3’ 5’

Mecanismos de reparación

Mecanismos de reparación

Replicación de ADN in-vitro: PCR Permite la amplificación de un fragmento de ADN de

Replicación de ADN in-vitro: PCR Permite la amplificación de un fragmento de ADN de interés Algunas aplicaciones: ◦ ◦ ◦ Clonado acelular de moléculas de ADN Detección de secuencias sin purificación previa Análisis de expresión génica Secuenciación de ácidos nucleicos Amplificación de ADN para su posterior clonación celular Aplicaciones en medicina: Diagnostico de enfermedades hereditarias/infecciosas Diagnóstico parental (amniocentesis, vellosidades coriónicas) Tipado de tejidos para transplantes Detección de células tumorales Estudios de asociación genotipo-fenotipo ◦ Técnicas forenses: huellas genéticas (Identificación de polimorfismos) Identificación individual Tests de paternidad ◦ Filogenia ◦ Análisis de genética poblacional

Reacción de replicación invitro: Molde ADN polimerasa: Taq polimerasa (termoestable) Cebadores: ◦ 3’ OH

Reacción de replicación invitro: Molde ADN polimerasa: Taq polimerasa (termoestable) Cebadores: ◦ 3’ OH libre ◦ Definen la región a amplificar d. NTPs (A, C, G, T) Condiciones para el funcionamiento de la enzima: ◦ Buffer ◦ Mg++ (cofactor de la enzima)

Procedimiento Desnaturalización del ADN (94ºC) Agregado e hibridación de los cebadores (50ºC 65ºC dependiendo

Procedimiento Desnaturalización del ADN (94ºC) Agregado e hibridación de los cebadores (50ºC 65ºC dependiendo de los cebadores) Elongación (72ºC) Repetición de estas etapas (25 -35 ciclos)

 Luego de terminados los ciclos se obtienen millones de moléculas de la región

Luego de terminados los ciclos se obtienen millones de moléculas de la región blanco La hace una técnica extremadamente sensible ◦ Ventaja: se puede amplificar ADN partiendo de muy poco material ◦ Desventaja: Contaminaciones

Variantes del método rt- PCR: ◦ Se usa una transcriptasa reversa para pasar una

Variantes del método rt- PCR: ◦ Se usa una transcriptasa reversa para pasar una muestra de ARN a ADN obteniendose ADN copia (ADNc) ◦ Se realiza un PCR para amplificar el ADNc de interés ◦ Estudios de expresión génica ◦ Clonado de genes eucariotas (eliminación de intrones)

 PCR cuantitativo (real time PCR, q. PCR): ◦ Se diferencia en que en

PCR cuantitativo (real time PCR, q. PCR): ◦ Se diferencia en que en cada ciclo de amplificación se cuantifica la cantidad de ADN obtenida ◦ Permite inferir la cantidad de moléculas de molde que existía originalmente en la muestra: Cuantificación de la expresión génica Cuantificación de microorganismos

Secuenciación de ADN Método de Sanger (nobel en 1980) Utiliza dideoxinucleotidos (dd. NTPs) para

Secuenciación de ADN Método de Sanger (nobel en 1980) Utiliza dideoxinucleotidos (dd. NTPs) para terminar una reacción de síntesis de ADN in-vitro

 Realizando 4 reacciones independientes (una para cada base) se puede inferir la secuencia

Realizando 4 reacciones independientes (una para cada base) se puede inferir la secuencia original

Secuenciación automática Sigue el mismo principio A diferencia del método anterior cada dd. NTP

Secuenciación automática Sigue el mismo principio A diferencia del método anterior cada dd. NTP se marca con una molecula fluorescente diferente Esto permite realizar una unica reaccion en la cual estan presentes los 4 dd. NTPs marcados Los fragmentos obtenidos se separan por electroforesis capilar La detección se realiza en un punto fijo al final de la corrida

Secuenciación de genomas Cada reacción de secuencia es capaz de leer unas 500 pb

Secuenciación de genomas Cada reacción de secuencia es capaz de leer unas 500 pb Como se obtuvo la secuencia continua del conjunto de los cromosomas humanos? Cada cromosoma tiene en promedio 150 Mb (genoma completo 109)

 Construcción de biblioteca de ADN genómico fragmentado al azar Lectura de secuencias individuales

Construcción de biblioteca de ADN genómico fragmentado al azar Lectura de secuencias individuales Las secuencias individuales son solapadas y ensambladas (contigs) Para asegurarse de que todas las secuencias estén representadas se leen unas 10 veces la cantidad de bases del genoma

 La velocidad de producción de las secuencias ha ido en. Recaumentoientemente se dio

La velocidad de producción de las secuencias ha ido en. Recaumentoientemente se dio un salto en este sentido con el desarrollo de los secuenciadores de “próxima generación” No usan terminación de cadena Se coloca una base cada vez y se detecta cual fue incorporada a cada molécula que se esta secuenciando Producen en una única reacción de secuencia millones de lecturas de fragmentos diferentes (paralelización) 108 1010 bases por corrida (menos de 1 día) De esta forma se secuencio el genoma entero de Watson en menos de 1 mes a un “bajo” costo

CONCLUSION • La capacidad de las células de mantener un elevado grado de orden

CONCLUSION • La capacidad de las células de mantener un elevado grado de orden dentro de un universo caótico, depende de la información genética que se expresa, se mantiene y a veces mejora, mediante los procesos genéticos básicos la síntesis de proteínas y del RNA, la reparaci 6 n de l DNA, la replicaci 6 n del DNA y la recombinaci 6 n genética. • En estos procesos, que producen y mantienen las proteínas y los ácidos nucleicos de una célula la información de una secuencia lineal de nucleótidos se utiliza para especificar otra cadena lineal de nucleótidos (una molécula de DNA o de RNA) o una cadena lineal de aminoácidos (una molécula proteica).

BIBLIOGRAFIA Donald Voet, Judith G. Voet, Charlotte W. Pratt. Fundamentos de Bioquímica. 2º edición.

BIBLIOGRAFIA Donald Voet, Judith G. Voet, Charlotte W. Pratt. Fundamentos de Bioquímica. 2º edición. Buenos Aires: Médica Panamericana. Thomas M. Devlin, Ph. D. Bioquímica. 4º edición. Editorial Reverté, S. A. M. Zafri Humayun. Department of Microbiology and Molecular Genetics, UMDNF_ New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103 -2714, USA. Molecular Microbiology (1998)30(5), 905 -910. http: //www. tesisenxarxa. net/TESIS_UAB/AVAILABLE/TDX-0714105180036//mjr 3 de 9. pdf http: //www. ucm. es/info/genetica/grupod/Mutacion/mutacion. htm http: //www 2. uah. es/biomolq/BM/Esquemas/Tema 4. htm http: //www. pakosimarro. com/paraimprimir/diversidad/ampliacionbio 2 bto/unid