Universal matterwave interferometry from microscopic to macroscopic in





























- Slides: 29
Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain Philipp Haslinger
Douglas Hofstadter
Matter-waves timeline 2013 m > 10. 000 am 810 atoms 1999 Fullerenes C 60 & C 70 1995 BEC 90‘s I 2, He 2, Na 2 1936 Neutrons 1930 He atoms & H 2 1927 Electrons 1923 De Broglie hypothesis
Overview Motivation Talbot-Lau interferometry Talbot-Lau in the time domain (OTIMA) Experimental protocol Interference of molecular clusters … Limits and outlook Far-off-resonant Bragg interferometer
Motivation Probing quantum theory on large and complex systems Study of novel decoherence effects Collapse models Bassi et al. Rev. Mod. Phys. 85, 471 (2013) 5 th force models Realization of a novel matter-wave interferometer scheme Quantum enhanced metrology of nanoparticles Relative momentum sensitivity < single photon recoil
The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx incoherent matter waves preparation of transversal coherence diffraction detection by shift of G 3
The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx
The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx
A model interferometer s g d
The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx
A model interferometer g = s max g Time - domain
A model interferometer Interference pattern of faster particles g d Time - domain
A model interferometer Interference pattern of slower particles g d Time - domain
A model interferometer After the same time all particles with the same mass produce the same interference, regardless of their velocities! Time - domain
Transition to time-domain After a certain time. . all particles with the same mass . . contribute to the same interference pattern . . regardless of their velocity g How to implement? -pulsed standing laser waves as periodic ionizing gratings Cahn et al. , PRL 79 (1997) Nimmrichter et al. , NJP 13 (2011)
OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection signal to MCP mass Pulsed cluster source 157 nm post ionization
OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection signal to MCP mass Pulsed cluster source 157 nm post ionization
Quantum interference is revealed as a Mass-dependent signal amplification/reduction Symmetric pulses� Interference m/2 m T 1 T 2 Asymmetric pulses T 1 T 2
The machine
Interference pattern encoded in the mass spectrum neon seedgas, vmax ≈920 m/s ⟶ TT =19 µs difference due to constructive interference Haslinger et al. Nature Physics (2013) Anthracene C 14 H 10 m = 178 amu argon seedgas, vmax ≈700 m/s ⟶ TT =26 µs
Interference pattern encoded in the mass spectrum Haslinger et al. Nature Physics (2013) Anthracene C 14 H 10 m = 178 amu
Clusters of the following molecules have interfered in the OTIMA interferometer recently: ferrocene Fe(C 5 H 5)2 m = 186 amu 1973 caffeine C 8 H 10 N 4 O 2 m = 194 amu vanillin C 8 H 8 O 3 m = 152 amu
• S. Nimmrichter et al. Concept of a time-domain ionizing matter-wave interferometer New J. Phys. 13, 075002 -23 (2011) • P. Haslinger et al. A universal matter-wave interferometer with optical ionization gratings in the time domain Nature Physics, 9, 144– 148 (2013) • N. Dörre et al. Photofragmentation beam splitters for matter-wave interferometry Phys. Rev. Lett. 113, 233001 (2014) • N. Dörre et al. A refined model for Talbot Lau matter-wave optics with pulsed photo-depletion gratings JOSA B 32, 114– 120 (2015)
Limits & Outlook: -absence of dispersive Grating/wall interaction high interference contrast expected for masses even beyond 106 amu mass Talbot time required velocity required vacuua gravitational deflection 6 10 106 amu 15 ms 1. 3 m/s -9 10 10 -9 mbar 4. 5 mm 107 amu 150 ms 13 cm/s 10 -11 mbar 45 cm 108 amu 1. 5 s 1. 3 cm/s 10 -12 mbar 45 m cooling and/or trapping necessary managable
THE OTIMA TEAM special thanks to Markus Arndt Jonas Rodewald Nadine Dörre Philipp Geyer Stefan Nimmrichter (Theory)
Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain
Antihydrogen interferometer V(z) Pions Standing wave Interferometer cell Interferometer 60 cm Mirror Octupole windings Mirror coils Trap g z Bias field z P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014
Antihydrogen interferometer Goals and features • Test g for H, anti-H • Initially 10 -3, eventually 10 -6 Design • Efficient use of ~300 atoms / month • Laser cooling (Donin, Fujiwara, Robicheaux J. Phys. B 46, 025302) • Adiabatic cooling • No Lyman-α laser for interferometry (but for laser cooling) • Far off-resonant Bragg transitions, couples to dc polarizability • Almost any atom Advantages • Commercial lasers • Based on ALPHA and atom interferometers, both work P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014
Thank you for your attention!