Universal matterwave interferometry from microscopic to macroscopic in

  • Slides: 29
Download presentation
Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain Philipp Haslinger

Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain Philipp Haslinger

Douglas Hofstadter

Douglas Hofstadter

Matter-waves timeline 2013 m > 10. 000 am 810 atoms 1999 Fullerenes C 60

Matter-waves timeline 2013 m > 10. 000 am 810 atoms 1999 Fullerenes C 60 & C 70 1995 BEC 90‘s I 2, He 2, Na 2 1936 Neutrons 1930 He atoms & H 2 1927 Electrons 1923 De Broglie hypothesis

Overview Motivation Talbot-Lau interferometry Talbot-Lau in the time domain (OTIMA) Experimental protocol Interference of

Overview Motivation Talbot-Lau interferometry Talbot-Lau in the time domain (OTIMA) Experimental protocol Interference of molecular clusters … Limits and outlook Far-off-resonant Bragg interferometer

Motivation Probing quantum theory on large and complex systems Study of novel decoherence effects

Motivation Probing quantum theory on large and complex systems Study of novel decoherence effects Collapse models Bassi et al. Rev. Mod. Phys. 85, 471 (2013) 5 th force models Realization of a novel matter-wave interferometer scheme Quantum enhanced metrology of nanoparticles Relative momentum sensitivity < single photon recoil

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx incoherent matter waves preparation of transversal coherence diffraction detection by shift of G 3

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx

A model interferometer s g d

A model interferometer s g d

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx

The Talbot Lau interferometer G 1 G 2 G 3 intensity g v Δx Δx

A model interferometer g = s max g Time - domain

A model interferometer g = s max g Time - domain

A model interferometer Interference pattern of faster particles g d Time - domain

A model interferometer Interference pattern of faster particles g d Time - domain

A model interferometer Interference pattern of slower particles g d Time - domain

A model interferometer Interference pattern of slower particles g d Time - domain

A model interferometer After the same time all particles with the same mass produce

A model interferometer After the same time all particles with the same mass produce the same interference, regardless of their velocities! Time - domain

Transition to time-domain After a certain time. . all particles with the same mass

Transition to time-domain After a certain time. . all particles with the same mass . . contribute to the same interference pattern . . regardless of their velocity g How to implement? -pulsed standing laser waves as periodic ionizing gratings Cahn et al. , PRL 79 (1997) Nimmrichter et al. , NJP 13 (2011)

OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection

OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection signal to MCP mass Pulsed cluster source 157 nm post ionization

OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection

OTIMA interferometer pulsed source interferometer mirror TOF MS tsource t=0 t=TT t=2 TT tdetection signal to MCP mass Pulsed cluster source 157 nm post ionization

Quantum interference is revealed as a Mass-dependent signal amplification/reduction Symmetric pulses� Interference m/2 m

Quantum interference is revealed as a Mass-dependent signal amplification/reduction Symmetric pulses� Interference m/2 m T 1 T 2 Asymmetric pulses T 1 T 2

The machine

The machine

Interference pattern encoded in the mass spectrum neon seedgas, vmax ≈920 m/s ⟶ TT

Interference pattern encoded in the mass spectrum neon seedgas, vmax ≈920 m/s ⟶ TT =19 µs difference due to constructive interference Haslinger et al. Nature Physics (2013) Anthracene C 14 H 10 m = 178 amu argon seedgas, vmax ≈700 m/s ⟶ TT =26 µs

Interference pattern encoded in the mass spectrum Haslinger et al. Nature Physics (2013) Anthracene

Interference pattern encoded in the mass spectrum Haslinger et al. Nature Physics (2013) Anthracene C 14 H 10 m = 178 amu

Clusters of the following molecules have interfered in the OTIMA interferometer recently: ferrocene Fe(C

Clusters of the following molecules have interfered in the OTIMA interferometer recently: ferrocene Fe(C 5 H 5)2 m = 186 amu 1973 caffeine C 8 H 10 N 4 O 2 m = 194 amu vanillin C 8 H 8 O 3 m = 152 amu

 • S. Nimmrichter et al. Concept of a time-domain ionizing matter-wave interferometer New

• S. Nimmrichter et al. Concept of a time-domain ionizing matter-wave interferometer New J. Phys. 13, 075002 -23 (2011) • P. Haslinger et al. A universal matter-wave interferometer with optical ionization gratings in the time domain Nature Physics, 9, 144– 148 (2013) • N. Dörre et al. Photofragmentation beam splitters for matter-wave interferometry Phys. Rev. Lett. 113, 233001 (2014) • N. Dörre et al. A refined model for Talbot Lau matter-wave optics with pulsed photo-depletion gratings JOSA B 32, 114– 120 (2015)

Limits & Outlook: -absence of dispersive Grating/wall interaction high interference contrast expected for masses

Limits & Outlook: -absence of dispersive Grating/wall interaction high interference contrast expected for masses even beyond 106 amu mass Talbot time required velocity required vacuua gravitational deflection 6 10 106 amu 15 ms 1. 3 m/s -9 10 10 -9 mbar 4. 5 mm 107 amu 150 ms 13 cm/s 10 -11 mbar 45 cm 108 amu 1. 5 s 1. 3 cm/s 10 -12 mbar 45 m cooling and/or trapping necessary managable

THE OTIMA TEAM special thanks to Markus Arndt Jonas Rodewald Nadine Dörre Philipp Geyer

THE OTIMA TEAM special thanks to Markus Arndt Jonas Rodewald Nadine Dörre Philipp Geyer Stefan Nimmrichter (Theory)

Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain

Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain

Antihydrogen interferometer V(z) Pions Standing wave Interferometer cell Interferometer 60 cm Mirror Octupole windings

Antihydrogen interferometer V(z) Pions Standing wave Interferometer cell Interferometer 60 cm Mirror Octupole windings Mirror coils Trap g z Bias field z P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014

Antihydrogen interferometer Goals and features • Test g for H, anti-H • Initially 10

Antihydrogen interferometer Goals and features • Test g for H, anti-H • Initially 10 -3, eventually 10 -6 Design • Efficient use of ~300 atoms / month • Laser cooling (Donin, Fujiwara, Robicheaux J. Phys. B 46, 025302) • Adiabatic cooling • No Lyman-α laser for interferometry (but for laser cooling) • Far off-resonant Bragg transitions, couples to dc polarizability • Almost any atom Advantages • Commercial lasers • Based on ALPHA and atom interferometers, both work P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014

Thank you for your attention!

Thank you for your attention!