Understanding Bias and Item Missing Data in NIBRS
Understanding Bias and Item Missing Data in NIBRS American Society of Criminology 2017 Annual Meeting Overcoming Measurement Challenges November 17, 2017 Philadelphia, PA Eman Abdu, Doug Salane and Peter Shenkin Center for Cybercrime Studies Mathematics & Computer Science Dept. John Jay College of Criminal Justice City University of New York
Acknowledgements Many students have contributed: Boris Bonderenko, Raul Cabrera and Henry Gallo Inter-university Consortium for Political and Social Research(ICPSR) and National Archive of Criminal Justice Data (NACJD) FBI, Criminal Justice Information Services Division, UCR/NIBRS Groups NSF, NASA and NIJ
Goals Provide back ground on FBI’s National Incident-Based Reporting System (NIBRS) Demonstrate utility of having NIBRS data in a relational data base (Oracle 12 c) Examine NIBRS data issues: nonresponse bias and extent of item missing data Briefly discuss ongoing work
NIBRS Data Structure • Group A offenses (53 crimes) – data on arrest, offense, offender, victim, property – data on incident (administrative) – 56 data elements in 6 main segments • Group B offenses (11 crimes) – social crimes (victimless) – e. g. , bad checks, disorderly conduct, driving under influence – only recorded if there is an arrest • new codes 2015: Identity theft (26 F), Computer hacking (26 G)
NIBRS Data Structure • NIBRS Group A offenses – data in 6 major files or segments • An incident can have multiple segments: victims, offenders, offenses, arrestees, property records • Tied together by Agency Identifier (ORI) and incident number • 13 Segment files 6 group A, 1 group B, 3 Windows files, 3 Batch Files
NIBRS Relational Database • 59 Tables – 13 Segments + Codebook • Enforces referential integrity – important when uploading new data • Provides SQL query capability and processing capabilities (indices, partitioning, etc. ) • Extract required data and relationships • Viewing and reporting tools
Sizes of NIBRS Segments John Jay NIBRS Relational Database Segment Type Record Counts Columns (fields) (in millions, first 7 rows) ’ 95 -‘ 05 ’ 95 -‘ 08 ‘ 95 -’ 15 1. Administrative 29. 1 44. 1 79. 7. 17 2. Offense 31. 9 48. 4 87. 9 26 3. Property 33. 3 50. 7 93. 8 25 4. Victim 31. 7 48. 2 88. 0 55 5. Offender 32. 9 50. 0 90. 8 12 6. Arrestee 8. 0 12. 4 23. 9 21 7. Group B Arrest 9. 9 14. 6 26. 5 19 8. Window Exceptional Clearance 11, 502 16, 611 38, 357 27 9. Window Recovered Property 7, 086 11, 074 18, 952 35 10. Window Arrestee 156, 791 179, 559 241, 187 32
Records per Segment in NIBRS Administrative 0 ffense 0 ffender Victim Property Arrestee Group B Arrest 2015 2014 2010 2005 2000 1995 5, 054, 699 4, 986, 370 5, 060, 854 4, 614, 054 2, 841, 523 837, 014 5, 669, 429 5, 574, 049 5, 610, 977 5, 079, 639 3, 098, 037 906, 509 5, 765, 370 5, 701, 941 5, 845, 297 5, 235, 653 3, 205, 276 937, 035 5, 677, 586 5, 587, 973 5, 636, 428 5, 067, 759 3, 075, 362 889, 743 6. 182, 510 6, 119, 863 6, 011, 620 5, 338, 234 3, 214, 981 951, 574 1, 671, 621 1, 667, 262 1, 606, 460 1, 334, 625 769, 630 227, 090 1, 591, 015 1, 590, 574 1, 753, 973 1, 457, 435 1, 006, 424 318, 524 6258 5662 4862 3365 1255 6284 LEAs Reporting
LEAs Reporting at Least One Incident Year Number 1995 1255 1996 1487 1997 % Increase Year Number % Increase 2006 4841 3. 4 18. 5 2007 4935 2. 0 1738 16. 9 2008 5184 5. 0 1998 2249 29. 4 2009 5595 8. 0 1999 2852 26. 8 2010 5662 1. 2 2000 3365 18. 0 2011 5874 3. 7 2001 3611 7. 3 2012 6086 3. 6 2002 3809 5. 5 2013 6129 . 7 2003 4287 12. 5 2014 6258 2. 1 2004 4525 5. 6 2015 6284 . 4 2005 4682 3. 5
Code Tables in NIBRS (Type Criminal Activity) CODE DESCRIPTION • B Buying/Receiving • C Cultivating/Manufacturing/Publishing • D Distributing/Selling • E Exploiting Children • J Juvenile Gang Involvement • G Other Gang • N None/Unknown Gang Involvement • O Operating/Promoting/Assisting • P Possessing/Concealing • T Transporting/Transmitting/Importing • U Using/Consuming • I Intentional Abuse and Torture
Code Tables in NIBRS (Victim Offender Relationship ) CODE DESCRIPTION VO Victim was Offender NA Not applicable AQ Victim was Acquaintance SE Victim was Spouse FR Victim was Friend CS Victim Common-Law Spouse NE Victim was Neighbor PA Victim was Parent BE Victim was Babysittee (the baby) SB Victim was Sibling BG Victim was Boyfriend/Girlfriend CH Victim was Child CF Victim was Child of Boyfriend / Girlfriend GP Victim was Grandparent HR Homosexual Relationship GC Victim was Grandchild XS Victim was Ex-Spouse IL Victim was In-Law EE Victim was Employee SP Victim was Stepparent ER Victim was Employer SC Victim was Stepchild OK Victim was Otherwise Known SS Victim was Stepsibling RU Relationship Unknown OF Victim other family member ST Victim was Stranger
Code Tables in NIBRS (Bias Motivation) • • • • • 11 Anti-White 12 Anti-Black or African American 13 Anti-American Indian or Alaska Native 14 Anti-Asian 15 Multi-Racial Group 21 Anti-Jewish 22 Anti-Catholic 23 Anti-Protestant 24 Anti-Islamic (Moslem) 25 Other Religion 26 Multi-Religious Group 27 Atheism/Agnosticism 31 Anti-Arab 32 Anti-Hispanic or Latino 33 Anti-Not Hispanic or Latino 41 Anti-Male Homosexual (Gay) • 42 Anti-Female Homosexual (Lesbian) 43 Anti-Lesbian, Gay, Bisexual, or Transgender, Mixed Group (LGBT) • 43 Anti-Lesbian, Gay, Bisexual, or Transgender, Mixed Group (LGBT) • 44 Anti-Heterosexual • 45 Anti-Bisexual • 51 Anti-Physical Disability • 52 Anti-Mental Disability • 88 None • 99 Unknown • 28 Anti-Mormon • 82 Anti-Other Christian • 84 Anti-Hindu • 85 Anti-Sikh • 61 Anti-Male • 62 Anti-Female • 71 Anti-Transgender • 72 Anti-Gender Non-Conforming • 16 Anti-Native Hawaiian or Other Pacific Islander
Entity Relationship (6 main segments)
Victim/Offender Join ORI Code Incident Number Offender Sequence No. Offender Age Victim Sequence No. Victim Age Incident Date 1 CO 0030400 CI 0 BRFRH-2 N 1 23 1 33 09 -Nov-00 2 DE 0020300 LT 01 KETVV 0 N 0 00 1 39 16 -DEC-02 3 DE 0020600 LI 01 KVBRTU N 1 11 1 09 06 -OCT-02 4 DE 0020600 LI 01 KVBRTU N 1 11 2 08 06 -OCT-02 5 DE 0020600 LI 01 KVBRTU N 2 10 1 09 06 -OCT-02 6 DE 0020600 LI 01 KVBRTU N 2 10 2 08 06 -OCT-02 7 DE 0020600 LI 01 KVBRTU N 3 10 1 09 06 -OCT-02 8 DE 0020600 LI 01 KVBRTU N 3 10 2 08 06 -OCT-02 9 DE 0020600 LI 01 KVBRTU N 4 12 1 09 06 -OCT-02 10 DE 0020600 LI 01 KVBRTU N 4 12 2 08 06 -OCT-02 11 IA 0820200 7 Z 1 C 7 REMQ-F 1 40 1 41 24 -JAN-02
NIBRS Incidents with Multiple Segments (1995 -2015) Total Incidents 79, 672 Segment One Three Two Four Arrestee 17, 329, 233 21. 75% 2, 207, 330 2. 77% 423, 080 0. 53% 123, 535 0. 16% 71, 715, 271 90. 01% 5, 950, 932 7. 47% 1, 320, 391 1. 66% 436, 482 0. 55% 72, 083, 712 90. 47% 6, 927, 813 8. 70% 596, 652 0. 75% 73, 380, 728 92. 10% 5, 168, 540 6. 49% 746, 749 0. 94% 205, 587 0. 26% Offender Offense 56, 083 0. 07% Victim
NIBRS Incidents with Multiple Segments (2015) Total Incidents 5, 054, 699 Segment One Three Two Four Arrestee 1, 259, 886 24. 93% 146, 598 2. 90% 24, 349 0. 48% 6, 674 0. 13% 4, 532, 042 89. 66% 402, 315 7. 96% 80, 674 1. 60% 25, 799 0. 51% 4, 504, 537 89. 12% 493, 675 9. 77% 49, 541 0. 98% 5, 964 0. 12% 4, 585, 143 90. 71% 384, 375 7. 60% 56, 808 1. 12% 15, 574 0. 31% Offender Offense Victim
Study of selected offenses where offender used a computer • Illustrates use of spreadsheet pivot tables to select desired data • Requires data from the offender and offense segments • Provides age and gender breakdown of the offenders • Examine selected offenses where offender used a computer
Spreadsheet Pivot Tables Offender Counts (Offender suspected of using a computer) Aggregated by Offense, Age and Gender Offense Description Age Group Gender Embezzlement Wire Fraud 11 – 20 20 – 30 31 – 40 41 – 50 51 – 60 F M F M F M Year Grand 2004 2005 Total 2000 2001 2002 2003 11 4 17 11 9 8 5 3 7 5 18 13 9 9 7 8 2 4 5 6 19 14 18 12 7 4 4 8 8 22 14 20 7 6 4 1 8 6 20 12 13 12 8 4 1 2 14 7 29 23 31 13 21 10 4 3 53 36 125 87 100 61 54 33 12 10 3 9 6 12 3 8 5 2 1 2 3 9 3 18 2 11 3 2 4 13 6 22 8 12 3 8 1 1 2 13 14 27 9 13 3 4 2 12 16 22 8 21 6 5 4 6 15 65 46 108 30 69 21 25 11 14 1 1 9 1 7 4 1 4 2
Spreadsheet Pivot Tables Offender Counts (Offender suspected of using a computer) Aggregated by Offense, Age and Gender Offense Description Age Group Gender Embezzlement Impersonation Year 2010 2011 2012 2013 Grand 2014 2015 Total 11 – 20 – 30 31 – 40 41 – 50 51 – 60 F M F M F M 17 10 42 31 31 29 24 8 12 4 15 13 47 45 40 23 25 16 8 10 8 12 47 35 36 26 29 12 11 3 22 25 82 67 60 24 28 21 13 12 35 27 58 64 72 35 32 16 8 8 41 23 83 75 53 38 35 26 18 9 138 110 359 317 292 175 173 99 70 46 11 – 20 – 30 31 – 40 41 – 50 51 – 60 F M F M F M 24 23 58 110 60 52 33 31 13 19 17 25 73 78 57 57 44 41 12 19 23 46 99 109 61 84 51 54 14 31 45 119 110 112 110 111 61 53 29 38 30 56 121 129 100 112 55 81 23 32 39 47 123 153 128 129 61 76 26 43 178 316 584 691 516 545 305 336 117 182
BIAS due to Non Response • Compare UCR and NIBRS reporting • Examine Breakdown of Violent and Property Crimes in NIBRS and UCR • Examine Larceny in NIBRS and UCR
NIBRS and UCR NIBRS • 33 states certified, 38% report all crime in NIBRS UCR • 16, 643 LEAs submitted data to UCR (18, 439 total ) • Covers 30% of US population (96 million ) • Includes major municipalities, 83 LEAs covering Group I cities • 29% of all crime, 18 LEAs cover Group I cities • Mainly summary data but with some incident data • 6648 LEAs participated in 2015, over 7000 in 2016
Breakdown of Violent Crimes UCR Data and NIBRS Crime Type UCR (2014) NIBRS (2014) UCR (2015) NIBRS Data (1995 -2015) Aggravated Assault 63. 61% 62. 29% 63. 8% 62. 44% 62. 84% Murder/Nonnegligent Manslaughter 1. 22% 1. 28% 1. 30% 1. 44% 1. 17% Rape (legacy definition) 7. 21% 10. 91% 7. 50% 11. 29% 10. 04% Robbery 27. 96% 25. 51% 27. 30% 24. 83% 25. 96%
Increase in Violent Crimes UCR and NIBRS (2013 -2015) Crime murder 2013 NIBRS UCR NIBRS 14, 196 3, 445 14, 249 3, 499 15, 696 4, 123 . 37% 1. 57% 10. 16% 17. 83% 84, 041 29, 723 90, 185 32, 279 5. 35% 3. 01% 7. 31% 8. 60% 325, 802 69, 512 327, 374 70, 923 -4. 47% -5. 24% 0. 48% 2. 03% 741, 291 169, 728 764, 449 178, 511 2. 37% 2. 62% 3. 12% 5. 17% 79, 770 28, 855 % increase robbery 341, 031 73, 354 % increase aggravated 724, 149 165, 395 assault % increase 2015 UCR % increase rape 2014
NIBRS Breakdown of Violent Crime (1995 – 2015) 1995(1) – 2015(21)
Breakdown of Property Crimes UCR and NIBRS (2014 and 2015) NIBRS % UCR (2015) (2014) Crime Type UCR (2014) UCR % Burglary 1, 729, 496 20. 90% 486, 554 20. 24% 1, 579, 527 19. 76% 461, 674 19. 44% Larceny 5, 858, 496 70. 77% 1, 736, 384 72. 24% 5, 706, 346 71. 39% 1, 724, 328 72. 60% 8. 85% 189, 072 7. 96% Motor Vehicle Theft 689. 527 8. 33% 180, 822 7. 52% 707, 758 UCR % NIBRS (2015) NIBRS %
Breakdown of Property Crimes NIBRS (1995 - 2015) Crime Type NIBRS (1995 -2015) NIBRS % Burglary 8, 252, 514 21. 27% Larceny 27, 352, 884 70. 50% Motor Vehicle Theft 3, 192, 197 8. 23%
Breakdown of Property Crimes NIBRS /UCR Trends (2014 to 2015) Crime Type UCR NIBRS Burglary -8. 67% -5. 11% Larceny -2. 60% -0. 69% Motor Vehicle Theft 2. 64% 4. 56%
Breakdown of Property Crime NIBRS (1995 -2015) 80. 00% 70. 00% 60. 00% 50. 00% Larceny 40. 00% Burglary 30. 00% Motor Vehicle 20. 00% 10. 00% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1995(1) – 2015(21)
Item Missing Data • NIBRS has 53 data elements most of which are mandatory • Data elements such as demographics of victim and offenders, relationships victim/offender and others are of interest to researchers and policy makers • Compare rates of missing data in NIBRS and other sources such as SHR • Examine item missing data in murders
NIBRS Unknown Murder Victim Information (1995 -2015) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 victims 458 643 749 975 1230 1695 1958 2053 2132 2358 3320 3404 3420 3252 3457 3430 3544 3689 3551 3596 4234 Unknown age 6 13 18 39 34 82 85 95 65 104 122 111 97 97 79 46 47 52 57 49 58 1. 31% 2. 02% 2. 40% 4. 00% 2. 7% 4. 84% 4. 34% 4. 63% 3. 05% 4. 41% 3. 67% 3. 26% 2. 84% 2. 98% 2. 29% 1. 34% 1. 33% 1. 41% 1. 61% 1. 36% 1. 37% Unknown race 6 7 10 21 27 52 49 53 52 58 76 66 62 93 54 49 77 62 57 73 71 1. 31% 1. 09% 1. 34% 2. 15% 2. 20% 3. 07% 2. 50% 2. 58% 2. 44% 2. 46% 2. 29% 1. 94% 1. 81% 2. 86% 1. 56% 1. 43% 2. 17% 1. 68% 1. 61% 2. 03% 1. 68% Unknown gender 0 3 0 7 6 17 15 15 7 21 13 25 16 28 8 9 13 11 14 23 14 0. 00% 0. 47% 0. 00% 0. 72% 0. 49% 1. 00% 0. 77% 0. 73% 0. 33% 0. 89% 0. 39% 0. 73% 0. 47% 0. 86% 0. 23% 0. 26% 0. 37% 0. 30% 0. 39% 0. 64% 0. 33%
NIBRS Unknown Offender Information 1 (1995 -2015) Victims 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 458 643 749 975 1230 1695 1958 2053 2132 2358 3320 3404 3420 3252 3457 3430 3544 3689 3551 Offender missing 4. 37% 7. 93% 10. 41% 7. 08% 9. 02% 9. 44% 11. 90% 10. 23% 11. 30% 10. 69% 11. 20% 11. 72% 12. 54% 13. 47% 12. 09% 13. 29% 12. 39% 13. 53% 12. 56% 2014 3596 11. 43% 2015 4234 13. 51% 1 The unit of analysis is victims. unknown demographics 7. 64% 7. 62% 9. 35% 9. 85% 9. 27% 15. 16% 11. 64% 12. 96% 12. 24% 15. 18% 19. 94% 18. 51% 15. 26% 14. 94% 15. 33% 14. 46% 15. 77% 15. 83% 14. 81% unknown age unknown race 6. 99% 5. 68% 7. 00% 6. 69% 8. 14% 7. 21% 8. 82% 6. 77% 7. 97% 7. 64% 14. 40% 10. 86% 10. 73% 8. 27% 11. 69% 8. 91% 10. 79% 9. 29% 13. 02% 11. 28% 17. 95% 14. 46% 16. 69% 12. 66% 13. 57% 9. 30% 12. 67% 10. 61% 13. 51% 9. 98% 13. 27% 9. 04% 14. 11% 10. 38% 14. 10% 10. 11% 13. 38% 9. 63% unknown gender 4. 80% 5. 29% 6. 28% 5. 23% 5. 93% 9. 79% 7. 46% 7. 60% 7. 88% 9. 16% 12. 02% 11. 05% 7. 63% 8. 30% 7. 84% 7. 49% 8. 94% 8. 65% 8. 39% 14. 35% 14. 65% 12. 26% 14. 27% 8. 79% 9. 54% 10. 65% 11. 45%
Ongoing Work • Time series studies to examine NIBRS missing data, victim-offender relationships, circumstances, location and weapon used • Extract data for specific studies and make it available in Excel Pivot Tables or Data Cubes • Examine effects of police reporting practices on the data, e. g. , inaccurate incident times • Prepare for additional NIBRS reporting. DOJ, OJP, BJS and FBI program to create a nationally representative crime sample and NIBRS compliant operational systems increasing NIBRS reporting. (Mainly an IT effort) • Make the relational database publicly available through use of the Oracle Data Pump utility
Thank You Eman Abdu Doug Salane and Peter Shenkin dsalane@jjay. cuny. edu 212 237 -8836 Center for Cybercrime Studies Math & CS Dept. John Jay College of Criminal Justice
- Slides: 45