Un Universo en Expansin Luis F Rodrguez CRy

  • Slides: 48
Download presentation
Un Universo en Expansión Luis F. Rodríguez CRy. A, UNAM y El Colegio Nacional

Un Universo en Expansión Luis F. Rodríguez CRy. A, UNAM y El Colegio Nacional

Un Universo en Expansión (Acelerada) Luis F. Rodríguez CRy. A, UNAM y El Colegio

Un Universo en Expansión (Acelerada) Luis F. Rodríguez CRy. A, UNAM y El Colegio Nacional

Nuestro Sol, una estrella más.

Nuestro Sol, una estrella más.

El Sol es parte de una familia de estrellas (mas nubes de gas y

El Sol es parte de una familia de estrellas (mas nubes de gas y polvo cósmicos) que llamamos la Vía Láctea, o sea nuestra galaxia…

Proyección de Mollweide: la podemos aplicar a la bóveda celeste. Así nuestra Galaxia se

Proyección de Mollweide: la podemos aplicar a la bóveda celeste. Así nuestra Galaxia se hace evidente.

La Vía Láctea: Nuestra galaxia. Diámetro de 100, 000 años-luz. 200, 000, 000 de

La Vía Láctea: Nuestra galaxia. Diámetro de 100, 000 años-luz. 200, 000, 000 de estrellas más “nebulosas” brillantes y oscuras.

El debate a principios del siglo XX era respecto a la distancia a las

El debate a principios del siglo XX era respecto a la distancia a las llamadas “nebulosas”: ¿eran parte de nuestra Galaxia?

El método de la paralaje

El método de la paralaje

Ahora conocemos muy precisamente las dimensiones del Sistema Solar No está a escala real

Ahora conocemos muy precisamente las dimensiones del Sistema Solar No está a escala real

Paralaje Estelar Conforme la Tierra se mueve de un lado a otro del Sol

Paralaje Estelar Conforme la Tierra se mueve de un lado a otro del Sol (seis meses), las estrellas cercanas parecen cambiar su posición respecto a las estrellas lejanas de fondo. d=1/p d = distancia a las estrellas cercanas en parsecs p = ángulo de paralaje de la estrella en segundo de arco

Pero… • El método de la paralaje no puede extenderse (al menos ahora) a

Pero… • El método de la paralaje no puede extenderse (al menos ahora) a distancias muy grandes. • Para estudiar el Universo lejano (o sea, el pasado del Universo) era necesario desarrollar otros métodos.

El brillo de una estrella disminuye como el cuadrado de su distancia…

El brillo de una estrella disminuye como el cuadrado de su distancia…

O sea, que si conocemos el brillo intrínseco de una estrella, podemos determinar su

O sea, que si conocemos el brillo intrínseco de una estrella, podemos determinar su distancia midiendo su brillo relativo A este método se le conoce como el de “la candela estándar” y nos permite llegar mucho mas lejos que el paralaje…

Henrietta Leavitt (1868 -1921) Las estrellas cefeidas son candelas estándar

Henrietta Leavitt (1868 -1921) Las estrellas cefeidas son candelas estándar

Edwin Hubble utiliza el método de las Cefeidas para demostrar que algunas de las

Edwin Hubble utiliza el método de las Cefeidas para demostrar que algunas de las nebulosas eran externas a nuestra galaxia, de hecho otras galaxias en sí.

Las galaxias • Conglomerados de estrellas, gas y polvo con dimensiones de cientos de

Las galaxias • Conglomerados de estrellas, gas y polvo con dimensiones de cientos de miles de años-luz. • Llegan a contener hasta un millón de millones de estrellas. • Existen con varias morfologías. • Las podemos considerar como los “ladrillos” que forman al Universo (las islas-universo).

M 87, una galaxia elíptica

M 87, una galaxia elíptica

En los años 1920´s, el astrónomo estadounidense Edwin Hubble comenzó a estudiar las galaxias,

En los años 1920´s, el astrónomo estadounidense Edwin Hubble comenzó a estudiar las galaxias, habiendo él mismo establecido antes que eran “islas-universos” similares a la Vía Láctea…

Hubble (1929)

Hubble (1929)

Expansión del Universo: v = H 0 d

Expansión del Universo: v = H 0 d

Hasta hace un par de décadas, nadie creía que la expansión del Universo pudiera

Hasta hace un par de décadas, nadie creía que la expansión del Universo pudiera acelerarse, solo se consideraba la desaceleración. La búsqueda de dos números: H 0 y q Había que observar lejos para favorecer uno de los modelos

La Edad del Universo Tiempo = Distancia/Velocidad Como por la ley de Hubble: Velocidad

La Edad del Universo Tiempo = Distancia/Velocidad Como por la ley de Hubble: Velocidad = Constante de Hubble X Distancia, Obtenemos que Tiempo = 1/Constante de Hubble Los valores actuales de la constante de Hubble dan una edad de unos 14, 000 millones de años…

La “Escalera” Cósmica Supernova (1 -1000 Mpc) Hubble Sphere (~3000 Mpc) 1000 Mpc Tully

La “Escalera” Cósmica Supernova (1 -1000 Mpc) Hubble Sphere (~3000 Mpc) 1000 Mpc Tully Fisher (0. 5 -00 Mpc) 100 Mpc 10 Mpc Cepheid Variables (1 kpc-30 Mpc) 1 Mpc Coma (~100 Mpc) Virgo (~10 Mpc) M 31 (~0. 5 Mpc) RR Lyrae (5 -10 kpc) 100 kpc LMC (~100 kpc) Spectroscopic Parallax (0. 05 -10 kpc) Parallax (0. 002 -0. 5 kpc) RADAR Reflection (0 -10 AU) 10 kpc Galactic Centre (~10 kpc) 1 kpc Pleides Cluster (~100 pc) Proxima Centauri (~1 pc)

¿Qué nos ha permitido estudiar galaxias muy lejanas? • La respuesta es unas explosiones

¿Qué nos ha permitido estudiar galaxias muy lejanas? • La respuesta es unas explosiones estelares que se llaman supernovas.

Supernovas tipo Ia SN 1994 D en NGC 4526 en el Cúmulo de Virgo

Supernovas tipo Ia SN 1994 D en NGC 4526 en el Cúmulo de Virgo (15 Mpc) Se cree que todas alcanzan la misma luminosidad pico, por lo tanto, son una “candela estándar”

Combinando los mejores telescopios con…

Combinando los mejores telescopios con…

…los mejores detectores 161 Megapixeles

…los mejores detectores 161 Megapixeles

Supernovas en otras galaxias

Supernovas en otras galaxias

Tobias Noa Tomo Frida Midge F-006 Naoki Maggie Shaya Elizabeth Jennie Lauren

Tobias Noa Tomo Frida Midge F-006 Naoki Maggie Shaya Elizabeth Jennie Lauren

La Expansión del Universo • Gracias a estas explosiones de supernova, es posible determinar

La Expansión del Universo • Gracias a estas explosiones de supernova, es posible determinar la distancia y velocidad de alejamiento de muy remotas galaxias. Con esto se puede reconstruir la historia de la expansión del Universo. • ¿Qué se esperaba? Pensemos en una pelota arrojada hacia arriba.

Pero no es esto lo que se observó

Pero no es esto lo que se observó

Pero, son muchos los pasos para llegar a la conclusión de que la expansión

Pero, son muchos los pasos para llegar a la conclusión de que la expansión del Universo se acelera.

Sin embargo… • El resultado de un Universo en expansión acelerada no solo aguantó

Sin embargo… • El resultado de un Universo en expansión acelerada no solo aguantó el resultado los cuestionamientos diversos, sino que resultó consistente con otros resultados astronómicos. • Se observa un Universo de geometría “plana”, lo cual requiere de una componente que llamamos la energía oscura.

La Energía Oscura • Una componente del Universo, de naturaleza desconocida, que produce un

La Energía Oscura • Una componente del Universo, de naturaleza desconocida, que produce un efecto repulsivo a grande escala. • La existencia de tanto la materia oscura como la energía oscura ha sido corroborada por el estudio de la radiación cósmica de fondo.

De ver el tamaño de las estructuras, podemos determinar la geometría del Universo La

De ver el tamaño de las estructuras, podemos determinar la geometría del Universo La geometría del Universo es plana (“flat”)

Densidad del Universo normalizada a la densidad crítica: La densidad de la radiación es

Densidad del Universo normalizada a la densidad crítica: La densidad de la radiación es despreciable ahora: De acuerdo a la radiación cósmica de fondo, el Universo es plano: Finalmente,

Los dos artículos reportando la expansión acelerada han recibido ya del orden de 7,

Los dos artículos reportando la expansión acelerada han recibido ya del orden de 7, 000 citas cada uno. Los dos grupos son de antecedentes diferentes, pero llegaron a lo mismo.

En el 2011 se entregó el Premio Nobel de Física a los descubridores de

En el 2011 se entregó el Premio Nobel de Física a los descubridores de la expansión acelerada del Universo

Los resultados son consistentes con una energía oscura constante en el tiempo.

Los resultados son consistentes con una energía oscura constante en el tiempo.

Composición del Universo en Materia-Energía

Composición del Universo en Materia-Energía

Los proyectos astronómicos del futuro nos permitirán reconstruir la historia de la expansión del

Los proyectos astronómicos del futuro nos permitirán reconstruir la historia de la expansión del Universo de manera precisa. SNAP Supernova /Acceleration Probe

Gracias por su atención

Gracias por su atención