Ultracold molecules for quantum science and tests of

  • Slides: 12
Download presentation
Ultracold molecules for quantum science and tests of fundamental physics Mike Tarbutt Centre for

Ultracold molecules for quantum science and tests of fundamental physics Mike Tarbutt Centre for Cold Matter Imperial College London

Directions Rb Ca F ? ? From Nature Physics 2, 636 (2006). Collisions between

Directions Rb Ca F ? ? From Nature Physics 2, 636 (2006). Collisions between ultracold atoms and molecules Single molecules in tweezer trap arrays Molecule chips for processing quantum information Measuring EDM with ultracold molecules See New J. Phys. 15, 053034 (2013)

Magneto-optical trapping of Ca. F 130 cm Slowing B-X (0 -0) 531. 0 nm

Magneto-optical trapping of Ca. F 130 cm Slowing B-X (0 -0) 531. 0 nm 628. 6 nm A-X (0 -1) MOT 606. 3 nm A-X (0 -0) 628. 6 nm A-X (0 -1) 628. 1 nm 627. 7 nm A-X (1 -2) A-X (2 -3) N=1 N=0 excited cooling • • • Number of molecules: 2 x 104 Density: 2 x 105 cm-3 Temperature: 12 m. K Trap frequency: 100 Hz Lifetime: 100 ms N=2 ground N=1 N=0 See Williams et al, New J. Phys. 19, 113035 (2017)

Sub-Doppler cooling I • • • Load the MOT at full intensity Ramp down

Sub-Doppler cooling I • • • Load the MOT at full intensity Ramp down the intensity to 1% Switch off the MOT coils Switch to a positive detuning of 20 MHz Turn the intensity back up again • Ballistic expansion of an ultracold cloud at optimum molasses intensity 5 ms 7 ms 9 ms 11 ms 13 ms T = 55 ± 2 µK See S. Truppe et al. , Nature Physics, 13, 1173 (2017)

Sub-Doppler cooling II σ+ Δ Excited state N=0 Electronic ground state N=1 F’=0 F=2

Sub-Doppler cooling II σ+ Δ Excited state N=0 Electronic ground state N=1 F’=0 F=2 F=1 148 MHz σ50 Temperature (μK) F’=1 m = -2 m = -1 m = 0 m= 1 m= 2 F=2 40 30 20 10 0 0 F=0 1 2 Time (ms) 3 T = 5. 4 ± 0. 7 µK F=1 See L. Caldwell et al. , ar. Xiv: 1812. 07926

State selection and coherent control F=2 F=1 N=1 F=0 F=1 20. 5 GHz 2

State selection and coherent control F=2 F=1 N=1 F=0 F=1 20. 5 GHz 2 1 0 -1 -2 1 0 -1 20. 5 GHz 0 t 123 MHz F=0 0 -1 0 Percentage recaptured 8 F=1 N=0 -1 0 1 1 N=0 N=1 6 T t t 4 2 0 -140 -120 -100 Relative frequency (k. Hz) See J. A. Blackmore et. al. Quantum Sci. Technol. 4, 014010 (2019) -80 -60

Magnetic trapping Blackbody heating rate (0. 22 s-1) After installing helium beam shutter: 4.

Magnetic trapping Blackbody heating rate (0. 22 s-1) After installing helium beam shutter: 4. 5 s trap lifetime See H. Williams et al. , Phys. Rev. Lett. 120, 163201 (2018)

F=2 N=2 F=1 41 GHz F=2 F=1 N=1 0 F=1 -1 0 1 20.

F=2 N=2 F=1 41 GHz F=2 F=1 N=1 0 F=1 -1 0 1 20. 5 GHz τc = 16 ms Motion-limited (50 µK) 8 4 0 2 4 Evolution time (ms) 6 N=0 0 -1 F=0 0 Spin-echo 8 8 τc > 47 ms 6 T 4 t 1 F=1 t t 12 2 1 0 -1 -2 1 0 -1 F=0 T 16 N=1 population F=3 3 2 1 0 -1 -2 -3 N=1 population Rotational coherence times (free space) 2 26 28 30 Evolution time (ms) 32 2 t t N. B. Preliminary data

Rotational coherence times (magnetic trap) F=2 N=2 F=1 41 GHz F=2 F=1 N=1 2

Rotational coherence times (magnetic trap) F=2 N=2 F=1 41 GHz F=2 F=1 N=1 2 1 0 -1 -2 1 0 -1 F=0 0 F=1 -1 0 1 20. 5 GHz 41 GHz transition N=1 population F=3 3 2 1 0 -1 -2 -3 τc = 6. 4(8) ms when d. B/dz = 45 G/cm Evolution time (ms) 1 N=0 F=1 0 -1 F=0 0 N. B. Preliminary data

Measuring electron EDM using ultracold Yb. F molecules A fountain of ultracold Yb. F

Measuring electron EDM using ultracold Yb. F molecules A fountain of ultracold Yb. F for measuring the electron EDM Ø Sensitivity proportional to spin-precession time Ø Can be very long with ultracold molecules

Camera 2 Transverse cooling of Yb. F Blue-detuned Red-detuned No cooling applied Probe lasers

Camera 2 Transverse cooling of Yb. F Blue-detuned Red-detuned No cooling applied Probe lasers Camera 1 T < 100 µK Transverse cooling 20 cm 552 + 568 + 565 nm Yb. F source See J. Lim et al. , Phys. Rev. Lett. 120, 123201 (2018)

Thanks to group members Hannah Williams Jongseok Lim Noah Fitch Sarunas Jurgilas Jonas Rodewald

Thanks to group members Hannah Williams Jongseok Lim Noah Fitch Sarunas Jurgilas Jonas Rodewald Ben Sauer Thomas Wall Ed Hinds Mike. Trigatzis