Trigonometry Identities Two facts: Example 1: Example 2: Simplify 4 sin 2 x + 4 cos 2 x Simplify 5 - 5 cos 2 x = 4(sin 2 x + cos 2 x) = 5(1 - cos 2 x) = 4(1) = 4 = 5 sin 2 x
Trigonometry Identities Two facts: Example 4: Example 3: Simplify 8 sin 2 x + 3 cos 2 x - 3 = 8 sin 2 x -3 - 3 cos 2 x = 8 sin 2 x -3(1 - cos 2 x) = 8 sin 2 x -3 sin 2 x = 5 sin 2 x Simplify 10 sin 2 x 10 cos 2 x = 10 tan 2 x
Exercise 1 Simplify: Trigonometry Identities 2 x 2 x 1. 10 – 10 sin 10 cos 2 x 2. 8 cos 2 x + 8 sin 8 2 x 2 3. 1 - sin cos x 2 x + 2 xsin 4. 4 cos 3 cos + 42 x + 3 5. tan 2 x (1 sin-2 xsin 2 x ) 06 -Jan-22
Trigonometry Identities Exercise 2 Simplify: 1. cosxtanx cosx 2. 5(1 -Cosx cos 2 x) 10 sin 2 x 3. 9 sinx Tanx 9 cosx 4 x cos 2 x 4. 3(1 - 3 cos sin 2 x) 06 -Jan-22
Trigonometry Identities Two facts: Example 5: Show (1 + sinx)(1 - sinx) = cos 2 x LHS = 1 - sinx + sinx - sin 2 x = 1 - sin 2 x = cos 2 x =RHS as required
Trigonometry Identities Two facts: Example 6: Show 1 - cos 2 A cos. A LHS = sin 2 A cos. A = sin. Atan. A = sin. A cos. A = sin. Atan. A = RHS as required
Exercise 3 Trigonometry Identities Show: 1. 7 sin 2 x + 7 cos 2 x = 7 2. (sinx + cosx)2 = 1 + 2 sinxcosx 3. tan. Qcos. Q = sin. Q 4. (cos. R – sin. R)2 + 2 sin. Rcos. R = 1 5. 5 sin 2 A + 3 cos 2 A = 2 sin 2 A + 3 06 -Jan-22