Trigonometric Functions Unit Circle Approach Radians vs Degrees





















- Slides: 21

Trigonometric Functions: Unit Circle Approach

Radians vs. Degrees Measurements of common angles

Unit Circle Unit circle: Circle with radius 1 centered at the origin Equation: x 2 + y 2 = 1 Circumference: 2π

Unit Circle Travel t units around circle, starting from the point (1, 0), ending at the point P = (x, y). Remember radians is the arc length in number of radii travelled as an angle rotates. The point P = (x, y) is used to define the trigonometric functions of t.

Trigonometric Functions Let t be a real number and P = (x, y) the point on the unit circle corresponding to t: Sine function: y-coordinate of P sin t = y Cosine function: x-coordinate of P cos t = x Tangent function: if x 0

Trigonometric Functions Let t be a real number and P = (x, y) the point on the unit circle corresponding to t: Cosecant function: if y 0 Secant function: if x 0 Cotangent function: if y 0

Signs of the Trigonometric Functions ALL I STUDENTS II TAKE III CALCULUS IV

Exact Values Using Points on the Circle A point on the unit circle will satisfy the equation x 2 + y 2 = 1 Use this information together with the definitions of the trigonometric functions.

Exact Values Using Points on the Circle Example. Let t be a real number and P = circle that corresponds to t. the point on the unit Problem: Find the values of sin t, cos t, tan t, csc t, sec t and cot t

Exact Values for Quadrantal Angles Example. Find the values of the trigonometric functions of θ Problem: θ = = 90°

Exact Values for Quadrantal Angles Example. Find the values of the trigonometric functions of θ Problem: θ = π = 180°

Exact Values for Quadrantal Angles Example. Find the values of the trigonometric functions of θ Problem: θ= = 270°

Exact Values for Quadrantal Angles

Exact Values for Quadrantal Angles Example. Find the exact values of (a) Problem: sin(90°) (b) Problem: cos(5π)

Exact Values for Standard Angles Example. Find the values of the trigonometric functions of θ Problem: θ = = 45°

Exact Values for Standard Angles Example. Find the values of the trigonometric functions of θ Problem: θ = = 60°

Exact Values for Standard Angles Example. Find the values of the trigonometric functions of θ Problem: θ = = 30°

Exact Values for Standard Angles

Exact Values for Standard Angles Example. Find the values of the following expressions (a) Problem: sin(315°) (b) Problem: cos(120°) (c) Problem:

Circles of Radius r Theorem. For an angle θ in standard position, let P = (x, y) be the point on the terminal side of θ that is also on the circle x 2 + y 2 = r 2. Then

Circles of Radius r Example. Problem: Find the exact values of each of the trigonometric functions of an angle µ if (-12, -5) is a point on its terminal side.