Treatment of Emerging Environmental Contaminants In Water NYC

  • Slides: 32
Download presentation
Treatment of Emerging Environmental Contaminants In Water NYC Watershed/Tifft Science & Technical Symposium September

Treatment of Emerging Environmental Contaminants In Water NYC Watershed/Tifft Science & Technical Symposium September 19, 2013

WATER QUALITY – GLOBAL TRENDS Contaminants are now being detected regularly in the water

WATER QUALITY – GLOBAL TRENDS Contaminants are now being detected regularly in the water supply Many regulators are now requiring routine testing of chemicals that were virtually unknown just a few years ago Growing awareness that the water supply is interconnected Supplies are tightening as population increases and water sources are more heavily tapped Unintentional water reuse is occurring “One city’s wastewater is another city’s drinking water”

OUR INTERCONNECTED WATER SUPPLY Sources of contaminants in our water supply: - Industrial discharge

OUR INTERCONNECTED WATER SUPPLY Sources of contaminants in our water supply: - Industrial discharge - Agricultural runoff - Chemical releases - Municipal wastewater Injection Well Extraction Well

WHAT IS UV-OXIDATION? It is the process of destroying trace organic contaminants in water

WHAT IS UV-OXIDATION? It is the process of destroying trace organic contaminants in water by: UV-Photolysis UV light alone breaks down the contaminant molecules UV-Oxidation UV light plus hydrogen peroxide (H 2 O 2) Hydrogen peroxide absorbs UV and produces hydroxyl radicals that oxidize contaminants

UV-PHOTOLYSIS Chemical bonds are broken by UV light

UV-PHOTOLYSIS Chemical bonds are broken by UV light

UV-OXIDATION Hydrogen peroxide Hydroxyl radical Chemical bonds are broken by hydroxyl radicals

UV-OXIDATION Hydrogen peroxide Hydroxyl radical Chemical bonds are broken by hydroxyl radicals

HOW UV TREATS ENVIRONMENTAL CONTAMINANTS Simultaneous Processes Typically, UV-photolysis and UVoxidation occur simultaneously: reaction

HOW UV TREATS ENVIRONMENTAL CONTAMINANTS Simultaneous Processes Typically, UV-photolysis and UVoxidation occur simultaneously: reaction time is milliseconds Most contaminants are broken down by a combination of both processes The relative contribution of either UV-photolysis and UV-oxidation varies by contaminant The UV energy output for both processes is sufficient to also provide microbial disinfection

CONTAMINANT DESTRUCTION BALANCE

CONTAMINANT DESTRUCTION BALANCE

EXAMPLES OF ECT CONTAMINANTS N-nitrosodimethylamine (NDMA) Industrial additive & disinfection byproduct 1, 4 -Dioxane

EXAMPLES OF ECT CONTAMINANTS N-nitrosodimethylamine (NDMA) Industrial additive & disinfection byproduct 1, 4 -Dioxane Industrial solvent Pesticides & Herbicides Agricultural crop protection products Petroleum Additives Including MTBE Volatile Organics (TCE, PCE, Vinyl Chloride, etc. ) Naphthalene and Phenols Pharmaceuticals & Personal Care Products Includes potential endocrine disruptors

NDMA AND 1, 4 -DIOXANE BACKGROUND • No current federal regulations for either NDMA

NDMA AND 1, 4 -DIOXANE BACKGROUND • No current federal regulations for either NDMA or 1, 4 -dioxane, however states have taken actions • 1, 4 -dioxane is a solvent stabilizer used to prevent solvent breakdown during degreasing operations • Conventional treatment technologies such as reverse osmosis (RO), coagulation/filtration, and carbon adsorption are ineffective

METHYL TERTIARY BUTYL ETHER (MTBE) - OVERVIEW • MTBE is a semi-volatile, chemically unreactive

METHYL TERTIARY BUTYL ETHER (MTBE) - OVERVIEW • MTBE is a semi-volatile, chemically unreactive molecule • Highly soluble in water (increase with Temp decrease), Properties of MTBE • Sorbs poorly to soil grains, and has a low volatility (Treat air discharge? ) Formula C 5 H 12 O Molecular Weight 88. 15 • Persistent and mobile in groundwater Vapor pressure 245 mm. Hg at 25 ºC Solubility in water 43, 000 -50, 000 mg/L Henry’s Law Constant 0. 587 L-atm/mol at 25 ºC • Break down to tert-butyl alcohol (TBA)

METHYL TERTIARY BUTYL ETHER (MTBE) - OVERVIEW Oxidation of MTBE generates TBA adsorbs readily

METHYL TERTIARY BUTYL ETHER (MTBE) - OVERVIEW Oxidation of MTBE generates TBA adsorbs readily to GAC/BAC Sources: leaking underground storage tanks, accidental spills of fuels, and releases from recreational vehicles in reservoirs. Regulated in NY (10 ppb), CA (13 ppb), NH (13 pp), PA (20 ppb), RI (40 ppb) and numerous others The USEPA has set non-enforceable drinking water advisory levels for MTBE of 20 ppb based on odor and 40 ppb based on taste Listed on the USEPA’s CCL and UCMR

SIZING FACTORS FOR ECT SYSTEMS Contaminant Quantum Yield Contaminant - Hydroxyl Radical Rate Constant

SIZING FACTORS FOR ECT SYSTEMS Contaminant Quantum Yield Contaminant - Hydroxyl Radical Rate Constant Contaminant Molar Absorption Coefficient Hydrogen Peroxide Concentration Water Absorbance (UVT) Water Matrix Hydroxyl Radical Scavenging Capacity Lamp Type

LAMP TECHNOLOGY

LAMP TECHNOLOGY

LPHO PHOTOLYSIS OF HYDROGEN PEROXIDE Measured MP: LP = 2. 8 The same number

LPHO PHOTOLYSIS OF HYDROGEN PEROXIDE Measured MP: LP = 2. 8 The same number of hydroxyl radicals are produced with ~65% less power for LPHO vs. MP with this water quality

REACTOR DETAILS

REACTOR DETAILS

REACTOR DETAILS LPHO • Lamp power and number of reactors in operation automatically adjusted

REACTOR DETAILS LPHO • Lamp power and number of reactors in operation automatically adjusted to minimize power • Reactors can be oriented 1 -, 2 -, or 3 -high for small footprint • 250 W LPHO lamp efficiently treating contaminants year round

REACTOR DETAILS LPHO Effluent Port Influent Port Two lamp bundles per chamber (one accessed

REACTOR DETAILS LPHO Effluent Port Influent Port Two lamp bundles per chamber (one accessed from each end)

Remediation Case Studies

Remediation Case Studies

GROUNDWATER REMEDIATION INSTALLATION - STOCKTON, CA 200 GPM facility treating extracted groundwater Water is

GROUNDWATER REMEDIATION INSTALLATION - STOCKTON, CA 200 GPM facility treating extracted groundwater Water is treated through air stripping, then UV-oxidation Contaminant of concern: 1, 4 -dioxane, TCE NDMA reduced from 150 ppb to less than 1 ppb Trojan. UVPhox™, amalgam lamp technology Full service hydrogen peroxide and delivery and maintenance

1, 4 -DIOXANE PERFORMANCE TESTING RESULTS - STOCKTON, CA

1, 4 -DIOXANE PERFORMANCE TESTING RESULTS - STOCKTON, CA

GROUNDWATER TREATMENT INSTALLATION – WATERLOO, ON Flow: 2378 gpm, 8 ppm H 2 O

GROUNDWATER TREATMENT INSTALLATION – WATERLOO, ON Flow: 2378 gpm, 8 ppm H 2 O 2 dose Water is treated through Fe/Mn Filtration Contaminants of concern: 1, 4 -dioxane, TCE 1. 3 Log reduction of 1, 4 dioxane guarantee GAC for H 2 O 2 quenching/redundancy (change out every 3 years, CL 2 dosing back up) Full service hydrogen peroxide delivery and maintenance

1, 4 -DIOXANE PERFORMANCE TESTING RESULTS – Greenbrook, ON

1, 4 -DIOXANE PERFORMANCE TESTING RESULTS – Greenbrook, ON

LOCATION OF CALIFORNIA DOMESTIC WATER CO The California Domestic Treatment Facility

LOCATION OF CALIFORNIA DOMESTIC WATER CO The California Domestic Treatment Facility

CONTAMINATION IN THE SAN GABRIEL VALLEY – BACKGROUND VOCs discovered in 1979 Plume defined,

CONTAMINATION IN THE SAN GABRIEL VALLEY – BACKGROUND VOCs discovered in 1979 Plume defined, now traverses several “Operable Units” including the Baldwin Park OU 1997, NDMA, 1, 4 -dioxane and perchlorate detected Cal Domestic Plume map courtesy of EPA Region 9 Mailer, May 1999

THE TREATMENT PROCESS AT CAL DOMESTIC Flow Rate: 6. 8 MGD (one train of

THE TREATMENT PROCESS AT CAL DOMESTIC Flow Rate: 6. 8 MGD (one train of two, =4, 700 gpm) 1. Ion Exchange 2. UV-Photolysis 3. Air Stripping 4. Chlorination (for residual in distribution system) Medium Pressure Rayox™ October 2001 to April 2005

THE TREATMENT PROCESS AT CAL DOMESTIC Flow Rate: 6. 8 MGD (one train of

THE TREATMENT PROCESS AT CAL DOMESTIC Flow Rate: 6. 8 MGD (one train of two, =4, 700 gpm) 1. Ion Exchange 2. UV-Photolysis 3. Air Stripping 4. Chlorination (for residual in distribution system) Low Pressure High Output Trojan. UVPhox™ April 2005 to Present

NDMA TREATMENT PERFORMANCE CAL DOMESTIC

NDMA TREATMENT PERFORMANCE CAL DOMESTIC

ENERGY USAGE (k. Wh) CAL DOMESTIC • ~5 X more power used with MP

ENERGY USAGE (k. Wh) CAL DOMESTIC • ~5 X more power used with MP solution vs. LPHO solution • Theory states that the lowest power ratio would be 3 X • Increase to 5 X from 3 X due to enhanced optical & hydraulic efficiencies with LPHO reactor when compared to MP reactor

OTHER REMEDIATION PROJECTS El Monte, California – 0. 072 MGD (50 gpm) Secor, Colorado

OTHER REMEDIATION PROJECTS El Monte, California – 0. 072 MGD (50 gpm) Secor, Colorado – 0. 029 MGD (20 gpm) Sunnyvale, California – 0. 14 MGD (100 gpm) La Puente Valley County Water District, CA – 3. 6 MGD California Domestic Water Company, CA – 14. 5 MGD

Suffolk County Water Authority Pilot • Prove technology effectiveness on destruction of 1, 4

Suffolk County Water Authority Pilot • Prove technology effectiveness on destruction of 1, 4 dioxane and other VOCs • Existing GAC for removing residual peroxide (extends GAC life) • Water quality higher than initial design (99% UVT vs 95% UVT) • Scavenging demand lower = lower H 2 O 2 dose • 1200 gpm Full scale system in design

Questions? Terry Keep ECT Sales Manager Trojan. UV (519) 457 -3400 tkeep@trojanuv. com www.

Questions? Terry Keep ECT Sales Manager Trojan. UV (519) 457 -3400 tkeep@trojanuv. com www. trojanuv. com