1 Horizontal Translations of a Periodic Function is called a Phase Shifting the graph to the right or to the left
Horizontal Translations y = sin (θ + 90° ) y = sin θ 1 -180 Graph the function of y = sin (90θ + 90° ) 270 180 -90 -1 Shifted 90° to the left 360
Horizontal Translations y = sin (θ – 90° ) y = sin θ 1 Graph the function of y = sin (90θ - 90° ) 270 180 -90 -1 Shifted 90° to the right 360
2 Vertical Translations of a Periodic Function is called a Vertical Shifting the graph upwards or downwards
Vertical Translations y = cosθ +3 4 y = cos θ 2 Graph the function of y = cos θ +3 1 -90 Shifted 3 units -1 upwards 90 180 270 360 y = cos θ
Concept Summary Vertical Shift Amplitude y = a sin b ( θ – h ) + k Period Phase Shift
Guides 1 Determine the vertical shift and graph the midline 2 Determine the amplitude and indicate maximum and minimum values 3 4 Determine the period and graph the function Determine the phase shift and translate the graph
1243 Determine the phase period shift and graph translate thethe and Determine the amplitude and indicate Determine the vertical graph shift the function graph maximum and minimum values midline 00 -4 -4 State the amplitude, period, phase shift and vertical shift for π 2π 3π vertical Periodshift = 4π Amplitude =Phase – 2 shift = 2 is Midline Max =y = -2–+2 2 == 0 Mini = -2 – 2 = - 4 To the left