Trabajo y cintica Trabajo y cintica Entonces Un

Trabajo y cinética

Trabajo y cinética Entonces: Un truco conocido

Trabajo y cinética Entonces: o

Trabajo y cinética Versión diferencial

Trabajo y cinética Versión diferencial Versión integral

Potencial y cinética: Conservación de su suma (x 1, v 1) (x 2, v 2) • Hay una función ADITIVA de la velocidad y de la posición (Energía) que permanece constante • El modulo de la velocidad es una función exclusiva del espacio. Basta saber donde esta una partícula ( y su energía inicial, para conocelo. • Si recorremos un camino cerrado, cuando volvemos al punto original, nada ha cambiado (es decir la velocidad es la misma, la posición la misma, la física (las fuerzas) la misma y por lo tanto todo se repite, resultando en oscilaciones. En particular, no es demasiado difícil oscilar en un mundo no disipativo. Basta volver a pasar en algún momento por el punto de origen.

Reconciliando viejos y nuevos mundos Que tiene que ver con Presupone implícitamente que la fuerza es constante Si la fuerza es constante F(x)

Reconciliando viejos y nuevos mundos Que tiene que ver con F(x) x ¿Cuál es el valor de este área en función de x? ¿Cuánto vale en el limite?

Reconciliando viejos y nuevos mundos Que tiene que ver con F(x) N kx x x k(N/m) m La mitad del área de un rectángulo. Altura*Ancho/2

Reconciliando viejos y nuevos mundos Que tiene que ver con F(x) x

LEYENDO UN POTENCIAL U(x) F F F(x) x

Dos potenciales conocidos G(Superf) = -mg U(x)=? ? ? Resorte = -kx

Dos potenciales conocidos U(x) G(Superf) = -mg U(x)=mgx Resorte = -kx U(x) ¿Cuales son las diferencias fundamentales entre estos dos potenciales?

¿A que altura llega la bocha? Xeq ¿Que observables dependen de alpha? U(x) E r h

El léxico de la dinámica en 1 dimensión En un punto dado del espacio, una función no puede más que: • Tener un máximo. • Tener un mínimo • Ser constante. (Punto indiferente) • Crecer o decrecer (Punto de aceleración) (Equlibrio inestable) (Equlibrio estable) Movimiento genérico en la línea resulta de una yuxtaposición de estos operadores elementales. A partir de una función potencial uno puede LEER el movimiento y conocer en pleno detalle todos sus aspectos cualitativos. Por lo tanto, el problema del movimiento en una dimensión, con fuerzas conservativas esta, esencialmente, resuelto. En lo que sigue extenderemos este problema a un mundo que será mas complejo por: 1) La dimensionalidad del espacio (pasar de la línea al plano) lo cual introduce una relación entre la geometría y la dinámica. 2) La introducción de fuerzas no conservativas que, veremos, no permiten utilizar una función temporal.

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. ¿Como es el movimiento si (a y b > 0), si (a < 0 y b > 0), si (a > 0 y b < 0) si (a < 0 y b < 0)?

SISTEMAS DINAMICOS: Formas canonicas de movimiento. a ? b b=0

SISTEMAS DINAMICOS: Formas canonicas de movimiento. a b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a b ? b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a ? b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=0 b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=-a/b x=0 b b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=-a/b x=0 b ? b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a ? x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=0 x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=0 x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=0 x=-a/b x=0 b ? x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a x=0 x=-a/b x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento: Moraleja 1 a x=0 x=-a/b x=0 b Sistema Lineal, un único comportamiento: Atractivo (Oscilaciones) o Expulsión (Divergencia) x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. Moraleja 2 a x=0 x=-a/b La estabilidad (atractivo o x=-a/b repulsivo) esta dado solo por el termino lineal x=0 b (a). x=0 b=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. x=0 x=-a/b a El comportamie nto asintotico depende del termino con x=-a/b mayor exponente x=0 b (b) (en este x=0 caso 2) Si este es par, no todas las soluciones son acotadas. b=0 x=0

SISTEMAS DINAMICOS: Formas canónicas de movimiento. a F=0 b b=0

Formas canónicas de movimiento: Una representación correcta y adecuada (entendiendo todo en un “golpe de ojo”) a b b=0

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. ¿Como es el movimiento en este campo de fuerzas? ¿Existen distintos estados “cualitativos” de movimiento?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. ¿Como es el movimiento en este campo de fuerzas? ¿Existen distintos estados “cualitativos” de movimiento?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. ¿Problema resuelto? ¿Encontramos todos los puntos de equlibrio?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. De hecho este potencial tiene infinitos mínimos (con sus correspondientes barreras)

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. ¿Que soluciones existen en este rango?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. Energía mayor que la barrera Energía menor que la barrera ¿Que soluciones existen en este rango?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. Si esta es la posición inicial, que sabemos de la energía ¿Que soluciones existen en este rango?

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. E=U(x)+T > U(x) La energía es mayor o igual que el valor de U en xo. ¿Que soluciones existen en este rango? Esto se debe al hecho de que T nunca es negativa

La “logica” del movimiento en 1 dimension en el espacio de las fuerzas. Cuales son las trayectorias cualitativas de estas dos masas?

UNA VEZ MAS VENTAJA PRACTICA Y CONCRETA En un punto dado del espacio, una función no puede más que: • Tener un máximo. • Tener un mínimo • Ser constante. (Punto indiferente) • Crecer o decrecer (Punto de aceleración) (Equlibrio inestable) (Equlibrio estable) Movimiento genérico en la línea resulta de una yuxtaposición de estos operadores elementales. A partir de una función potencial uno puede LEER el movimiento y conocer en pleno detalle todos sus aspectos cualitativos. Por lo tanto, el problema del movimiento en una dimensión, con fuerzas conservativas esta, esencialmente, resuelto. En lo que sigue extenderemos este problema a un mundo que será mas complejo por: 1) La dimensionalidad del espacio (pasar de la línea al plano) lo cual introduce una relación entre la geometría y la dinámica. 2) La introducción de fuerzas no conservativas que, veremos, no permiten utilizar una función temporal.

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección.

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección.

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección.

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección.

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección. O aun reordenando términos: Diferencial de Trabajo (por definición) y aquí se adivina la relevancia de esta cantidad. Diferencial de Energía Cinetica

Diferencial de energía en varias (dos) dimensiones. La integral de la fuerza a lo largo de su dirección. En general se puede resolver el problema en la dirección de movimiento. Esto es trivial (ha de hacerse una sola vez) cuando el movimiento es rectilíneo, independientemente de la dirección de la fuerzs. Cuando el movimiento es curvo el problema es iterativo porque para hacer esta proyección hace falta conocer la trayectoria para la cual hace falta conocer las fuerzas y así siguiendo… La proyección de la fuerza que contribuye al trabajo (y de hecho, en este caso, al movimiento) porque el plano ejerce una fuerza igual y contraria con lo que todas la fuerzas resultante son paralelas a la dirección de movimiento. En un caso genérico, fuerzas transversales pueden contribuir al movimiento (modificando la dirección, sin realizar trabajo)

Primer manifestación de la direccionalidad: El signo Un “campo” de fuerzas constante Trayectoria forzada en un campo constante ¿Cuál es el trabajo de esta fuerza? (x 1, v 1) (x 2, v 2)

Primer manifestación de la direccionalidad: El signo Un “campo” de fuerzas constante Trayectoria forzada en un campo constante ¿Cuál es el trabajo de esta fuerza? (x 1, v 1) (x 2, v 2)

Mapas Escalares: La anatomía de la función abs(xy) Imagenes del mapa A lo largo de curvas En coordenadas polares

Gradiente, la dirección (y cantidad de cambio, de una función escalar)

Mapas Escalares: La anatomía de la función x*exp(r 2) Dos representaciones equivalentes de las “ternas” (x, y, f(x, y)) Las curvas de nivel, o las direcciones a lo largo de las cuales una función no cambia y aquellas, ortogonales, de máximo cambio.

Inferir la tendencia al cambio a partir de una función potencial

Inferir la tendencia al cambio a partir de una función potencial Función Potencial y campo gradiente, dos conceptos hermanaos. El gradiente es el vector formado por el valor de cambio (con signo) en cada dirección. Apunta entonces en la dirección donde la función mas crece. La fuerza es inversa al gradiente y cambia el momento (alterando la tendencia a mantener la velocidad constante). Nótese que el momento evoluciona en dirección de los pozos de potencial. Nótese también que el movimiento no converge a los pozos (es decir, no se estaciona en un mínimo) porque la partícula tiene inercia. Un pozo suficientemente profundo “atrapa una particula” que oscila en este pozo.
- Slides: 60