Today Imaging with coherent light Coherent image formation

  • Slides: 40
Download presentation
Today Imaging with coherent light • Coherent image formation –space domain description: impulse response

Today Imaging with coherent light • Coherent image formation –space domain description: impulse response –spatial frequency domain description: coherent transfer function MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 1

The 4 F system MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 2

The 4 F system MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 2 Fourier transform relationship

The 4 F system Theorem: MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a-

The 4 F system Theorem: MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 3

The 4 F system object plane Fourier plane MIT 2. 71/2. 710 Optics 11/08/04

The 4 F system object plane Fourier plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 4 Image plane

The 4 F system object plane Fourier plane MIT 2. 71/2. 710 Optics 11/08/04

The 4 F system object plane Fourier plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 5 Image plane

The 4 F system with FP aperture object plane MIT 2. 71/2. 710 Optics

The 4 F system with FP aperture object plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 6 Fourier plane : aperture-limited Image plane: blurred i. e. low-pass filtered

Impulse response & transfer function A point source at the input plane. . .

Impulse response & transfer function A point source at the input plane. . . results not in a point image but in a diffraction pattern h(x’, y’) Point source at the origin ↔delta function δ(x, y) h(x’, y’) is the inpulse response of the system More commonly, h(x’, y’) is called the Coherent Point Spread Function (Coherent PSF) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 7

Coherent imaging as a linear, shift-invariant system Thin transparency output amplitude impulse response illumi

Coherent imaging as a linear, shift-invariant system Thin transparency output amplitude impulse response illumi nation convolution Fourier transform (≡plane wave spectrum Fourier transform transfer function multiplication transfer function H(u, v): akapupil function MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 8

Transfer function & impulse response of rectangular aperture Transfer function: circular aperture MIT 2.

Transfer function & impulse response of rectangular aperture Transfer function: circular aperture MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 9 Impulse response: Airy function

Coherent imaging as a linear, shift-invariant system Example: 4 F system with circular aperture

Coherent imaging as a linear, shift-invariant system Example: 4 F system with circular aperture @ Fourier plane Thin transparency output amplitude Impulse response convolution illumi nation Fourier transform (≡plane wave spectrum MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 10 Fourier transform transfer function multiplication

Transfer function & impulse response of rectangular aperture MIT 2. 71/2. 710 Optics 11/08/04

Transfer function & impulse response of rectangular aperture MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 11

Coherent imaging as a linear, shift-invariant system Example: 4 F system with circular aperture

Coherent imaging as a linear, shift-invariant system Example: 4 F system with circular aperture @ Fourier plane Thin transparency output amplitude Impulse response illumi nation convolution Fourier transform (≡plane wave spectrum MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 12 Fourier transform transfer function multiplication

Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture unlimited

Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture unlimited (all orders pass) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 13 Image plane: grating is imaged with lateral de-magnification

Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture limited

Aperture–limited spatial filtering object plane: grating generates one spatial frequency Fourier plane: aperture limited (some orders cut off) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 14 Image plane: grating is not imaged only 0 th order (DC component) surviving

Spatial frequency clipping field after input transparency field before filter field after filter field

Spatial frequency clipping field after input transparency field before filter field after filter field at output (image plane) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 15

Effect of spatial filtering Fourier plane filter with circ-aperture Original object (sinusoidal spatial variation,

Effect of spatial filtering Fourier plane filter with circ-aperture Original object (sinusoidal spatial variation, i. e. grating) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 16 Frequency-filtered image (spatial variation blurred out, only average survives)

Spatial frequency clipping f 1=20 cm λ=0. 5μm monochromatic coherent on-axis illumination object plane

Spatial frequency clipping f 1=20 cm λ=0. 5μm monochromatic coherent on-axis illumination object plane Transparency intensity at input plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 17 Fourier plane cire-aperture Intensity before Fourier Filter (negative contrast) Fourier filter transitivity

Space-Fourier coordinate transformations : pixel size spare domain Nyquist relationships. MIT 2. 71/2. 710

Space-Fourier coordinate transformations : pixel size spare domain Nyquist relationships. MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 18 : frequency resolution Spatial Frequency domain

4 F coordinate transformations : pixel size spare domain Nyquist relationships. MIT 2. 71/2.

4 F coordinate transformations : pixel size spare domain Nyquist relationships. MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 19 Fourier plane

Spatial frequency clipping f 1=20 cm λ=0. 5μm monochromatic coherent on-axis illumination object plane

Spatial frequency clipping f 1=20 cm λ=0. 5μm monochromatic coherent on-axis illumination object plane transparency intensity at input plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 20 Fourier plane cire-aperture Intensity before Fourier Filter (negative contrast) Image plane observed field Fourier filter transitivity

Formation of the impulse response object plane: pinhole generates spherical wave Fourier plane: circ-aperture

Formation of the impulse response object plane: pinhole generates spherical wave Fourier plane: circ-aperture limited (plane wave is clipped) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 21 Image plane: Fourier transform of aperture, Airy pattern

Low–pass filtering field after input transparency field before filter field after filter field at

Low–pass filtering field after input transparency field before filter field after filter field at output (image plane) (Airy pattern) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 22

Effect of spatial filtering Fourier plane filter with circ-aperture Original object (small pinhole ⇔impulse,

Effect of spatial filtering Fourier plane filter with circ-aperture Original object (small pinhole ⇔impulse, generating spherical wave past the transparency) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 23 Impulse reponse (aka point-spread function, original point has blurred to an Airy pattern, or jinc)

Low–pass filtering the impulse monochromatic coherent on-axis illumination object plane transparency intensity at input

Low–pass filtering the impulse monochromatic coherent on-axis illumination object plane transparency intensity at input plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 24 Fourier plane cire-aperture Intensity before Fourier Filter (negative contrast) Fourier filter transitivity f 1=20 cm λ=0. 5μm

Spatial frequency clipping monochromatic coherent on-axis illumination object plane transparency intensity at input plane

Spatial frequency clipping monochromatic coherent on-axis illumination object plane transparency intensity at input plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 25 Fourier plane cire-aperture Intensity after Fourier filter Image plane observed field Intensity at output plane note: pseudo-accentuated sidelobes

Low-pass filtering with the 4 F system monochromatic coherent on-axis illumination Fourier plane cire-aperture

Low-pass filtering with the 4 F system monochromatic coherent on-axis illumination Fourier plane cire-aperture object plane transparency Image plane observed field arriving At Fourier plane Fourier transform field arriving from Fourier plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 26

Spatial filtering with the 4 F system monochromatic coherent on-axis illumination Fourier plane cire-aperture

Spatial filtering with the 4 F system monochromatic coherent on-axis illumination Fourier plane cire-aperture object plane transparency Image plane observed field arriving At Fourier plane Fourier transform field arriving from Fourier plane MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 27 Fourier transform

Examples: the amplitude MIT pattern Original MIT pattern MIT 2. 71/2. 710 Optics 11/08/04

Examples: the amplitude MIT pattern Original MIT pattern MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 28

Weak low–pass filtering Pinhole, radius 2. 5 mm f 1=20 cm λ=0. 5μm MIT

Weak low–pass filtering Pinhole, radius 2. 5 mm f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 29 Fourier filter Filtered with pinhole, radius 2. 5 mm Intensity @ image plane

Moderate low–pass filtering (aka blurring) f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710

Moderate low–pass filtering (aka blurring) f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 30 Pinhole, radius 1 mm Filtered with pinhole, radius 1 mm Fourier filter Intensity @ image plane

Strong low–pass filtering Pinhole, radius 0. 5 mm Fourier filter f 1=20 cm λ=0.

Strong low–pass filtering Pinhole, radius 0. 5 mm Fourier filter f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 31 Filtered with pinhole, radius 0. 5 mm Intensity @ image plane

Moderate high–pass filtering f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04

Moderate high–pass filtering f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 32 Reflective disk, radius 0. 5 mm Filtered with reflective disk, radius 0. 5 mm Fourier filter Intensity @ image plane

Strong high–pass filtering (aka edge enhancement) f 1=20 cm λ=0. 5μm MIT 2. 71/2.

Strong high–pass filtering (aka edge enhancement) f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 33 Reflective disk, radius 2. 5 mm Filtered with reflective disk, radius 2. 5 mm Fourier filter Intensity @ image plane

1 -dimensional blurring f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04

1 -dimensional blurring f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 34 Horizontal slit, width 2 mm Filtered with horizontal slit, width 2 mm Fourier filter Intensity @ image plane

1 -dimensional blurring vertical slit, width 2 mm Fourier filter f 1=20 cm λ=0.

1 -dimensional blurring vertical slit, width 2 mm Fourier filter f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 35 Filtered with vertical slit, width 2 mm Intensity @ image plane

Phase objects thickness glass plate (transparent) protruding part phase-shifts coherent illumination by amount φ=2π(n-1)t/λ

Phase objects thickness glass plate (transparent) protruding part phase-shifts coherent illumination by amount φ=2π(n-1)t/λ Often useful in imaging biological objects (cells, etc. ) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 36

Viewing phase objects Original phase MIT pattern (intensity) Intensity (object is invisible) MIT 2.

Viewing phase objects Original phase MIT pattern (intensity) Intensity (object is invisible) MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 37 Original 0. 1 rad phase MIT pattern (phase) Amplitude (need interferometer)

Zernicke phase-shift mask (magnitude), radii 5 mm & 1 mm MIT 2. 71/2. 710

Zernicke phase-shift mask (magnitude), radii 5 mm & 1 mm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 38 phase-shift mask (phase), radii 5 mm & 1 mm (phase)

Imaging with Zernicke mask phase-shift mask (phase), radii 5 mm & 1 mm (phase)

Imaging with Zernicke mask phase-shift mask (phase), radii 5 mm & 1 mm (phase) Fourier filter f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 39 Filtered with, phase-shift mask, radii 5 mm & 1 mm Intensity @ image plane

Imaging with Zernicke mask phase-shift mask (phase), radii 5 mm & 0. 1 mm

Imaging with Zernicke mask phase-shift mask (phase), radii 5 mm & 0. 1 mm (phase) Fourier filter f 1=20 cm λ=0. 5μm MIT 2. 71/2. 710 Optics 11/08/04 wk 10 -a- 40 Filtered with, phase-shift mask, radii 5 mm & 0. 1 mm Intensity @ image plane