Threshold Shift vs Gate Oxide Thickness Poly Si

  • Slides: 13
Download presentation
Threshold Shift vs Gate Oxide Thickness Poly- Si Gate e-- Si. O 2 ++

Threshold Shift vs Gate Oxide Thickness Poly- Si Gate e-- Si. O 2 ++ ++ ++ + + + Si e-Tunneling Region Hole removal process by tunneling in thin-oxide MOS Structures Dosage = 150 Krads Sachs et. al. IEEE Trans. Nuclear Science NS-31, 1249 (1984) Book. Timothy R Oldham “Ionizing Radiation Effects in MOS Oxides” 1999 World Scientific 1

IBM Foundry Oxide Thickness Lithography Process Operating Oxide Name Voltage Thickness 0. 25 µm

IBM Foundry Oxide Thickness Lithography Process Operating Oxide Name Voltage Thickness 0. 25 µm 0. 13 µm nm 6 SF 2. 5 5 3. 3 7 8 RF 1. 2 & 1. 5 2. 2 & 3. 3 5. 2 2

Can We Have High Radiation Tolerance & Higher Voltage Together ? ? ? Controller

Can We Have High Radiation Tolerance & Higher Voltage Together ? ? ? Controller : Low Voltage High Voltage: Switches – LDMOS, Drain Extension, Deep Diffusion etc >> 20 Volts HEMT Ga. N on Silicon, Silicon Carbide, Sapphire 3

Thin Oxide Devices (non IBM) Company Device IHP Process Foundry Oxide Dose before Observation

Thin Oxide Devices (non IBM) Company Device IHP Process Foundry Oxide Dose before Observation Name/ Number Name nm Damage seen Damage Mode ASIC custom SG 25 V GOD 12 V IHP, Germany 5 Minimal Damage Xy. Semi FET 2 amps HVMOS 20080720 12 V China 7 Minimal Damage Xy. Semi XP 2201 HVMOS 20080720 15 V China 7/12 Enpirion EN 5365 CMOS 0. 25 µm Dongbu Hi. Tek, Korea 5 64 Krads Enpirion EN 5382 CMOS 0. 25 µm Dongbu Hi. Tek, Korea 5 111 Krads Enpirion EN 5360 #2 SG 25 V (IHP) IHP, Germany 5 100 Mrads Minimal Damage Enpirion EN 5360 #3 SG 25 V (IHP) IHP, Germany 5 48 Mrads Minimal Damage 2 Q 2010 Necessary condition for Radiation Hardness - Thin Gate Oxide But not sufficient IHP: Epi free, High resistivity substrate, Higher voltage, lower noise devices Dongbu: Epi process on substrate, lower voltage due to hot carriers in gate oxide 4

Fig. 4 XYSemi LDMOS Device: Effect of 60 Co Gamma radiation followed by neutron

Fig. 4 XYSemi LDMOS Device: Effect of 60 Co Gamma radiation followed by neutron radiation on VG versus ID on the same device. Fig. 5 XYSemi LDMOS Device: Effect of 10 15/ cm 2 of 800 Me. V protons on V G versus ID. Note that shift is in opposite polarity from the expected shift normal to ionizing radiation effects. 5

6

6

Twepp Nagos 7

Twepp Nagos 7

LDMOS Structure Laterally Diffused Drain Extension High Voltage / high Frequency Main market. Cellular

LDMOS Structure Laterally Diffused Drain Extension High Voltage / high Frequency Main market. Cellular base stations High performance RF LDMOS transistors with 5 nm gate oxide in a 0. 25 μm Si. Ge: C Bi. CMOS technology: IHP Microelectronics Electron Devices Meeting, 2001. IEDM Technical Digest. International 2 -5 Dec. 2001 Page(s): 40. 4. 1 - 40. 4. 4 8

R. Sorge et al , IHP Proceedings of SIRF 2008 Conference High Voltage Complementary

R. Sorge et al , IHP Proceedings of SIRF 2008 Conference High Voltage Complementary Epi Free LDMOS Module with 70 V PLDMOS for a 0. 25 μm Si. Ge: C Bi. CMOS Platform 9

Non- Synchronous Replacement for LHC 4913: LHC Radiation Hard LDO Made by ST Microelectronics

Non- Synchronous Replacement for LHC 4913: LHC Radiation Hard LDO Made by ST Microelectronics Use with Ferrite Coil Engineering Samples 1 Q 2010 10

11

11

12

12

Bias during Radiation Max operating V & I Limit Power by duty cycle Pomona

Bias during Radiation Max operating V & I Limit Power by duty cycle Pomona Box 30 m 330 2 Watts Source ~ 0. 070 Amps 1 Ω DMM DC m. V Drain FET Reading = ~ 0. 035 Amps @ 50% Duty Cycle Pulse Generator 0. 1 – 2 MHz 50 % Duty Cycle 0 to - 5 V Gate Power Supply V out = 20 Volts 100 50 Ω. Terminator GND Powered FET S D G Satish Dhawan, Yale University July 28. 2009 2 Shorted FETs Rad vs wo Bias FET Setup for Proton Radiation Exposure 13