The Nonhydrostatic Icosahedral NIM Model Description and Potential

  • Slides: 61
Download presentation
The Nonhydrostatic Icosahedral (NIM) Model: Description and Potential Use in Climate Prediction Alexander E.

The Nonhydrostatic Icosahedral (NIM) Model: Description and Potential Use in Climate Prediction Alexander E. Mac. Donald Earth System Research Lab Climate Test Bed Seminar June 3, 2009 World Weather Building NIM Design: Jin Luen Lee and Alexander E. Mac. Donald 1

X-section location Flow-followingfinite-volume Icosahedral Model FIM Temp at lowest level 2

X-section location Flow-followingfinite-volume Icosahedral Model FIM Temp at lowest level 2

3

3

4

4

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3. NIM test cases. 4. Cloud resolving global models and 100 day prediction. 3. NIM schedule. 5

NIM 3 -D finite volume nonhydrostatic equations on Z-coordinate: 6

NIM 3 -D finite volume nonhydrostatic equations on Z-coordinate: 6

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3. NIM test cases. 4. Cloud resolving global models and 100 day prediction. 5. NIM schedule. 7

FIM/NIM model characteristics: • Horizontal discretization on Icosahedral grid. • Computations: Single loop, table

FIM/NIM model characteristics: • Horizontal discretization on Icosahedral grid. • Computations: Single loop, table described, indirect addressed (Scalable to 100, 000 CPUs). • Explicit 3 rd-order Adams-Bashforth (AB 3) time differencing. • Model variables defined on a non-staggered A-grid. • Finite-Volume line integration on local coordinate. • AB 3 -multistep Flux Conserving Transport: extend Zalesak’s (1979) two-time level to multiple time levels. • FIM: ALE in vertical (sigma-theta hybrid) GFS physics, GSI Initialization + ……. • NIM: 3 -D finite-volume formulated on control volume, heightcoordinate, GFS physics, + …… Lee and Mac. Donald (2009): A Finite-Volume Icosahedral Shallow Water Model in Local Coordinate, MWR, 2009, in press (on-line early release)8

Icosahedral Grid Generation n=0 n=2 n=1 n=3 N=((2**n)**2)*10 + 2 ; 5 th level

Icosahedral Grid Generation n=0 n=2 n=1 n=3 N=((2**n)**2)*10 + 2 ; 5 th level – n=5 N=10242 ~ 240 km; max(d)/min(d)~1. 2 6 th level – n=6 N= N=40962 ~ 120 km; 7 th level – n=7 N=163842 ~60 km 8 th level – n=8 N=655, 362 ~30 km; 9 th level – n=9 N=2, 621, 442 ~15 km 10 th level ~7. km; 11 th level ~3. 5 km , 12 th level ~1. 7 km 9

Finite Volume Numerical Weather Prediction: Represent fields as “total over volume”, using integral relations:

Finite Volume Numerical Weather Prediction: Represent fields as “total over volume”, using integral relations: Advantage over finite difference: Perfectly conservative. 10

Nonhydrostatic Icosahedral Model 3 -D finite volume • Finite Volume • Control volume coordinate

Nonhydrostatic Icosahedral Model 3 -D finite volume • Finite Volume • Control volume coordinate • Full conservative form • Characteristic vert. sound waves • • Designed for GPU • Fourth order time accuracy • Piecewise Parabolic space (3 rd order) 11

Local coordinate: Every point (and its neighbors) are mapped to a local stereographic coordinate.

Local coordinate: Every point (and its neighbors) are mapped to a local stereographic coordinate. 12

Graphic Processing Units: On a Steep Performance Curve 13

Graphic Processing Units: On a Steep Performance Curve 13

14

14

2011: GPU 4 KM NIM 1 Day Forecast Projected Processors Points per Processor Time

2011: GPU 4 KM NIM 1 Day Forecast Projected Processors Points per Processor Time (hours) Percent of Real Time 1280 32768 1. 87 7. 8% 2560 16384 . 99 4. 1% 5120 8192 . 56 2. 3% 10240 4096 . 33 1. 3% 20480 2048 . 20 . 8% 40960 1024 . 15 . 6% 15

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3. NIM test cases. 4. Cloud resolving global models and 100 day prediction. 5. NIM schedule. 16

Preliminary NIM 2 -D test cases: 1. Mountain waves. 2. Warm bubble. 3. Heating

Preliminary NIM 2 -D test cases: 1. Mountain waves. 2. Warm bubble. 3. Heating forced vertically propagating acoustic waves. 17

Numerical experiment on mountain waves 18

Numerical experiment on mountain waves 18

Warm Bubble simulation: A rising thermal in an isentropic atmosphere. 19

Warm Bubble simulation: A rising thermal in an isentropic atmosphere. 19

t= 0. 5 min 20

t= 0. 5 min 20

t= 0. 5 min 21

t= 0. 5 min 21

t= 1. 0 min 22

t= 1. 0 min 22

t= 1. 5 min 23

t= 1. 5 min 23

t= 2. 0 min 24

t= 2. 0 min 24

t= 2. 5 min 25

t= 2. 5 min 25

t= 3. 0 min 26

t= 3. 0 min 26

t= 3. 5 min 27

t= 3. 5 min 27

t= 4. 0 min 28

t= 4. 0 min 28

t= 4. 5 min 29

t= 4. 5 min 29

t= 5. 0 min 30

t= 5. 0 min 30

t= 5. 5 min 31

t= 5. 5 min 31

t= 6. 0 min 32

t= 6. 0 min 32

t= 6. 5 min 33

t= 6. 5 min 33

t= 7. 0 min 34

t= 7. 0 min 34

t= 7. 5 min 35

t= 7. 5 min 35

t= 8. 0 min 36

t= 8. 0 min 36

t= 8. 5 min 37

t= 8. 5 min 37

t= 9. 0 min 38

t= 9. 0 min 38

t= 9. 5 min 39

t= 9. 5 min 39

t=10. 0 min 40

t=10. 0 min 40

t=10. 5 min 41

t=10. 5 min 41

t=11. 0 min 42

t=11. 0 min 42

t=11. 5 min 43

t=11. 5 min 43

t=12. 0 min 44

t=12. 0 min 44

t=12. 5 min 45

t=12. 5 min 45

t=13. 0 min 46

t=13. 0 min 46

t=13. 5 min 47

t=13. 5 min 47

t=14. 0 min 48

t=14. 0 min 48

t=14. 5 min 49

t=14. 5 min 49

t=15. 0 min 50

t=15. 0 min 50

t=15. 5 min 51

t=15. 5 min 51

t=16. 0 min 52

t=16. 0 min 52

Test 3: Heating forced vertical acoustic waves to test upper boundary reflections. 53

Test 3: Heating forced vertical acoustic waves to test upper boundary reflections. 53

Explicit treatment of vertically propagated acoustic waves “Correct solution”: Explicit with top boundary at

Explicit treatment of vertically propagated acoustic waves “Correct solution”: Explicit with top boundary at 80 km, 20 shown. 54

Test of implicit form, vertical propagated acoustic waves 55 Implicit (e. g. WRF tri-diaganol)

Test of implicit form, vertical propagated acoustic waves 55 Implicit (e. g. WRF tri-diaganol) vertical sound waves have reflection problems.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3. NIM test cases. 4. Cloud resolving global models and 100 day prediction. 5. NIM schedule. 56

Statements by Prof. J. Shukla at Hollingsworth Symposium: • Proper numerical treatment of midlatitude

Statements by Prof. J. Shukla at Hollingsworth Symposium: • Proper numerical treatment of midlatitude waves gives 10 day predictability. • Proper numerical treatment of tropical deep convection gives predictability out to 100 days. 57

OLR Hovmoller showing MJO simulation NICAM dx=3. 5 km (Non-hydrostatic ICosahedral Atmospheric Model) 58

OLR Hovmoller showing MJO simulation NICAM dx=3. 5 km (Non-hydrostatic ICosahedral Atmospheric Model) 58 Courtesy of Prof. Satoh (Science, Dec. 7, 2007)

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3.

NIM Talk Summary 1. NIM equations. 2. NIM grid, numerical and computational formulation. 3. NIM test cases. 4. Cloud resolving global models and 100 day prediction. 5. NIM schedule. 59

NIM Development and Implementation Schedule • Model design complete Dec 2008 • Initial dynamic

NIM Development and Implementation Schedule • Model design complete Dec 2008 • Initial dynamic model coded Mar 2009 • Initial dynamic model test Jun 2009 • Initial full physics test Dec 2009 • Prediction test and debug 2010 • Continuous real-time runs 2011 • Full GPU NIM runs 2012 • Available for operations 2013 60

Questions. . alexander. e. macdonald@noaa. gov 61

Questions. . alexander. e. macdonald@noaa. gov 61