The Laws Of Surds What is a Surd

  • Slides: 21
Download presentation
The Laws Of Surds

The Laws Of Surds

What is a Surd =6 = 12 The above roots have exact values and

What is a Surd =6 = 12 The above roots have exact values and are called rational These roots do NOT have exact values and are called irrational OR Surds

Adding and subtracting a surd such as 2. It can be treated in the

Adding and subtracting a surd such as 2. It can be treated in the same way as an “x” variable in algebra. The following examples will illustrate this point.

Examples List the first 10 square numbers 1, 2, 4, 9, 16, 25, 36,

Examples List the first 10 square numbers 1, 2, 4, 9, 16, 25, 36, 49, 64, 81, 100

Some square roots can be broken down into a mixture of integer values and

Some square roots can be broken down into a mixture of integer values and surds. The following examples will illustrate this idea: 12 = 4 x 3 = 2 3 To simplify 12 we must split 12 into factors with at least one being a square number. Now simplify the square root.

Have a go ! Think square numbers 45 32 72 = 9 x 5

Have a go ! Think square numbers 45 32 72 = 9 x 5 = 16 x 2 = 4 x 18 = 3 5 = 4 2 = 2 x 9 x 2 = 2 x 3 x 2 = 6 2

Simplify the following square roots: (1) 20 (2) 27 (3) 48 = 2 5

Simplify the following square roots: (1) 20 (2) 27 (3) 48 = 2 5 = 3 3 = 4 3 (4) 75 (5) 4500 (6) 3200 = 5 3 = 30 5 = 40 2

Starter Questions Simplify : = 2√ 5 =¼ = 3√ 2 =¼

Starter Questions Simplify : = 2√ 5 =¼ = 3√ 2 =¼

Examples

Examples

You may recall from your fraction work that the top line of a fraction

You may recall from your fraction work that the top line of a fraction is the numerator and the bottom line the denominator. Fractions can contain surds:

If by using certain maths techniques we remove the surd from either the top

If by using certain maths techniques we remove the surd from either the top or bottom of the fraction then we say we are “rationalising the numerator” or “rationalising the denominator”. Remember the rule This will help us to rationalise a surd fraction

Rationalising Surds To rationalise the denominator multiply the top and bottom of the fraction

Rationalising Surds To rationalise the denominator multiply the top and bottom of the fraction by the square root you are trying to remove: ( 5 x 5 = 25 = 5 )

Rationalising Surds Let’s try this one : Remember multiply top and bottom by root

Rationalising Surds Let’s try this one : Remember multiply top and bottom by root you are trying to remove

Rationalising Surds Rationalise the denominator

Rationalising Surds Rationalise the denominator

Rationalise the denominator of the following :

Rationalise the denominator of the following :

Starter Questions Conjugate Pairs. Multiply out : =3 = 14 = 12 - 9

Starter Questions Conjugate Pairs. Multiply out : =3 = 14 = 12 - 9 = 3

Rationalising Surds Conjugate Pairs. Look at the expression : This is a conjugate pair.

Rationalising Surds Conjugate Pairs. Look at the expression : This is a conjugate pair. The brackets are identical apart from the sign in each bracket. Multiplying out the brackets we get : = 5 x - 2 5 5 =5 -4 =1 + 2 5 - 4 When the brackets are multiplied out the surds ALWAYS cancel out and we end up seeing that the expression is rational ( no root sign )

Conjugate Pairs. Examples =7– 3=4 = 11 – 5 = 6

Conjugate Pairs. Examples =7– 3=4 = 11 – 5 = 6

Rationalising Surds Conjugate Pairs. Rationalise the denominator in the expressions below by multiplying top

Rationalising Surds Conjugate Pairs. Rationalise the denominator in the expressions below by multiplying top and bottom by the appropriate conjugate:

Rationalising Surds Conjugate Pairs. Rationalise the denominator in the expressions below by multiplying top

Rationalising Surds Conjugate Pairs. Rationalise the denominator in the expressions below by multiplying top and bottom by the appropriate conjugate:

Rationalise the denominator in the expressions below : Rationalise the numerator in the expressions

Rationalise the denominator in the expressions below : Rationalise the numerator in the expressions below :