The Law of Iterated Expectation Nancy Zhang Easy



![Example 1 (continued) Think E(Y|X=xi) as one random variable E(Y|X=xi) =Ai: E(Y)=∑x Ai*P(X=xi)=E(Ai)=E[E(Y|X=xi)]=E[μY|X] *This Example 1 (continued) Think E(Y|X=xi) as one random variable E(Y|X=xi) =Ai: E(Y)=∑x Ai*P(X=xi)=E(Ai)=E[E(Y|X=xi)]=E[μY|X] *This](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-4.jpg)
![E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Intermediate Example 2 trivariate random variables E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Intermediate Example 2 trivariate random variables](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-5.jpg)
![E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Solution: Step 1: E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Solution: Step 1:](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-6.jpg)
![E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Similarly, X P(X) E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Similarly, X P(X)](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-7.jpg)
![E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Step 2: average E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Step 2: average](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-8.jpg)

- Slides: 9

The Law of Iterated Expectation Nancy Zhang

Easy Example 1 bivariate random variables Let X=schooling of the person Y=monthly income of the person Solve the expectation of Y from the following table X Income Expectation Probability of Xi 1 E(Y|X=1)=1000 P(X=1)=0. 5 2 E(Y|X=2)= 500 P(X=2)=0. 5 x=1 x=2 have an university degree or above don’t have an university degree

Example 1 (continued) Solution: E(X)=E(Y|X=1)*P(X=1) +E(Y|X=2)*P(X=2) n n X=x 1, x 2…, xn E (Y)=E(Y|X=x 1)*P(X=x 1)+E(Y|X=x 2)*P(X=x 2) +…+E(Y|X=xn)*P(Y|X=xn) =∑x E(Y|X=xi)*P (X=xi)
![Example 1 continued Think EYXxi as one random variable EYXxi Ai EYx AiPXxiEAiEEYXxiEμYX This Example 1 (continued) Think E(Y|X=xi) as one random variable E(Y|X=xi) =Ai: E(Y)=∑x Ai*P(X=xi)=E(Ai)=E[E(Y|X=xi)]=E[μY|X] *This](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-4.jpg)
Example 1 (continued) Think E(Y|X=xi) as one random variable E(Y|X=xi) =Ai: E(Y)=∑x Ai*P(X=xi)=E(Ai)=E[E(Y|X=xi)]=E[μY|X] *This process is called average out X. Recall the formula: E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X]
![EY x EYXxiP Xxi EEYXxi EμYX Intermediate Example 2 trivariate random variables E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Intermediate Example 2 trivariate random variables](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-5.jpg)
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Intermediate Example 2 trivariate random variables Let X=schooling of the person Y=monthly income of the person Z=gender (Z=1 men; Z=2 women) a. Check if there is salary discrimination on women b. Solve the expectation of Y from the following table X P(X) Z P(Z) Conditional Income Expectation 1 0. 5 E(Y|X=1, Z=1)=1200 2 0. 5 E(Y|X=1, Z=2)= 800 1 0. 5 E(Y|X=2, Z=1)=400 2 0. 5 E(Y|X=2, Z=2)=500 2 0. 5
![EY x EYXxiP Xxi EEYXxi EμYX Example 2 continued Solution Step 1 E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Solution: Step 1:](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-6.jpg)
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Solution: Step 1: average out X a. When Z=1, X P(X) Conditional Income Expectation 1 0. 5 E(Y|X=1, Z=1)=1200 2 0. 5 E(Y|X=2, Z=1)=400 Use the formula above, average out X: let: E(Y|X=xi, Z=1)=a 1 E(A|Z=1)= ∑x E(Y|X=xi, Z=1)*P(X=xi) = E[E(Y|X=xi, Z=1)|Z=1] = 1200*0. 5+400*0. 5=800
![EY x EYXxiP Xxi EEYXxi EμYX Example 2 continued Similarly X PX E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Similarly, X P(X)](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-7.jpg)
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Similarly, X P(X) Conditional Income Expectation when Z=2, 1 0. 5 E(Y|X=1, Z=2)=800 2 0. 5 E(Y|X=2, Z=2)=500 average out X: E(A|Z=2) = ∑x E(Y|X=xi, Z=2)*P(X=xi) = 800*0. 5+500*0. 5=650 As 650<800, the conditional expectations suggest that there is salary discrimination on women. * *Note: self-created data, not based on real survey.
![EY x EYXxiP Xxi EEYXxi EμYX Example 2 continued Step 2 average E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Step 2: average](https://slidetodoc.com/presentation_image_h/803a8247a717c07fc2add4b782460fe4/image-8.jpg)
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Step 2: average out Z: Z P(Z) Conditional Income Expectation 1 0. 5 E(A|Z=1)= 800 2 0. 5 E(A|Z=2)= 650 Again use the formula for bivariate random numbers: E(Y)= ∑z E(A|Z=zi)*P(Z=zi) = E[E(A|Z=zi)] = E{E[E(Y|X, Z)|Z]} = 0. 5*800+650*0. 5=725

Hard The law of iterated expectation • For a bivariate random variables, X and Y: E(Y) = E[E(Y|X)] • For a trivariate random variables, X, Y and Z E(Y|X, Z) = conditional mean given X and Z. E(Y|Z) = E[E(Y|X, Z)|Z] E(Y|X) = E[E(Y|X, Z)|X] E(Y) = E{E[E(Y|X, Z)|Z]} (note: taking expectations in several iterations. )
The law of iterated expectation
Law of iterated expectations
Fubuni
Iterated conditional modes
Iterated local search
Examples of deductive reasoning
Inductive reasoning vs deductive reasoning geometry
Deductive reasoning examples
Newton's first law and second law and third law
Newton's first law and second law and third law