The Jy Sky and the RadioFIR relation vs

  • Slides: 26
Download presentation
The µJy Sky and the Radio-FIR relation vs. z Frazer Owen NRAO EVLA Vision

The µJy Sky and the Radio-FIR relation vs. z Frazer Owen NRAO EVLA Vision December 17, 2008 1

Outline of Talk 1) µJy radio properties 2) Radio-FIR relation vs z 3) Implications,

Outline of Talk 1) µJy radio properties 2) Radio-FIR relation vs z 3) Implications, future directions Frazer Owen NRAO EVLA Vision December 17, 2008 2

Short List of Collaborators • • • G. Morrison (UH) M. Pannella, V. Strazzullo,

Short List of Collaborators • • • G. Morrison (UH) M. Pannella, V. Strazzullo, W-H. Wang (NRAO) M. Polletta (Milan) C. Lonsdale (NRAO) A. Baker, Matt Klimek (Rutgers) R. Ivison, A. Biggs (ROE) D. Shupe (Herschel) B. Wilkes (CFA) R. Kilgard (Wesleyan) Frazer Owen NRAO EVLA Vision December 17, 2008 3

SWIRE Deep Field: 1046+59 • Deepest existing radio survey at 20 cm (rms 2.

SWIRE Deep Field: 1046+59 • Deepest existing radio survey at 20 cm (rms 2. 7µJy), also 50 cm (10µJy), 90 cm (70µJy) • GALEX UV, ground-based optical, NIR, Spitzer IRAC, confusion-limited MIPS (24, 70, 160 µm), MAMBO 1. 2 mm, Chandra imaging, spectroscopy. • XMM, SCUBA 2, Herschel Her. MES 100500µm (1 st priority) to come. Frazer Owen NRAO EVLA Vision December 17, 2008 4

Frazer Owen NRAO EVLA Vision December 17, 2008 5

Frazer Owen NRAO EVLA Vision December 17, 2008 5

Radio Source Photo-z’s Ugriz. JHK 3. 6µ 4. 5µ Pannella/Strazzullo Frazer Owen NRAO EVLA

Radio Source Photo-z’s Ugriz. JHK 3. 6µ 4. 5µ Pannella/Strazzullo Frazer Owen NRAO EVLA Vision December 17, 2008 6

Radio Luminosities vs. z Majority of sources > 10^23 W/Hz, more luminous than Arp

Radio Luminosities vs. z Majority of sources > 10^23 W/Hz, more luminous than Arp 220 Frazer Owen NRAO EVLA Vision December 17, 2008 7

1) µJy sources are resolved median size ~ 1 arcsec or ~10 kpc, unlike

1) µJy sources are resolved median size ~ 1 arcsec or ~10 kpc, unlike local ULIRGs < 100 pc. Frazer Owen NRAO EVLA Vision December 17, 2008 8

Median Sizes from 1046+59 Large median size for sources continues down to bottom of

Median Sizes from 1046+59 Large median size for sources continues down to bottom of the survey. Frazer Owen NRAO EVLA Vision December 17, 2008 9

20 cm Log N –Log S Huyng et al 2005 Log N-log S continues

20 cm Log N –Log S Huyng et al 2005 Log N-log S continues flat to bottom of survey. 6 sources/sq arcmin. Frazer Owen NRAO EVLA: 10 X deeper: natural confusion ? EVLA Vision December 17, 2008 10

Radio SF or AGN ? M 84: AGN (Mechanical Energy) M 82: SF Both

Radio SF or AGN ? M 84: AGN (Mechanical Energy) M 82: SF Both ~ galaxy size, but different relation to optical light. Frazer Owen NRAO EVLA Vision December 17, 2008 11

Relation of Radio and Optical Brightness distributions (GOODS-N) Frazer Owen NRAO EVLA Vision December

Relation of Radio and Optical Brightness distributions (GOODS-N) Frazer Owen NRAO EVLA Vision December 17, 2008 12

Radio SF vs. AGN Locally, AGN/SF luminosity functions cross at 10^23 W/Hz. <10^23 SF

Radio SF vs. AGN Locally, AGN/SF luminosity functions cross at 10^23 W/Hz. <10^23 SF >10^23 AGN Condon et al 2002 Frazer Owen NRAO EVLA Vision December 17, 2008 13

Generic Radio/FIR Spectrum Frazer Owen NRAO EVLA Vision December 17, 2008 14

Generic Radio/FIR Spectrum Frazer Owen NRAO EVLA Vision December 17, 2008 14

Radio-FIR Relation For SF q=2. 3 σ(q)~0. 2 Condon et al 2002 Frazer Owen

Radio-FIR Relation For SF q=2. 3 σ(q)~0. 2 Condon et al 2002 Frazer Owen NRAO EVLA Vision December 17, 2008 15

ULIRGs (Ultraluminous Infrared Galaxies) L_FIR > 10^12 L_sun Local examples have radio size <

ULIRGs (Ultraluminous Infrared Galaxies) L_FIR > 10^12 L_sun Local examples have radio size < 100 pc (LIRGs > 10^11 L_sun) Arp 220 L_20 cm=2. 3 x 10^23 W/Hz L_FIR=1. 2 x 10^12 L_sun Frazer Owen NRAO EVLA Vision December 17, 2008 16

Radio-FIR Relation vs. z from Stacking Spitzer MIPS data • 24, 70 and 160

Radio-FIR Relation vs. z from Stacking Spitzer MIPS data • 24, 70 and 160 µm sources stacked at the radio source positions in ranges of L_20 cm and z. • 160/70 µm ratio and error calculated. • Using redshifted templates with different dust temperatures, rest-frame: T(dust), L_FIR and q=log(L_20 cm/L_FIR) are calculated. 24µ 70µ 160µ Frazer Owen NRAO EVLA Vision December 17, 2008 17

Frazer Owen NRAO EVLA Vision December 17, 2008 18

Frazer Owen NRAO EVLA Vision December 17, 2008 18

Frazer Owen NRAO EVLA Vision December 17, 2008 19

Frazer Owen NRAO EVLA Vision December 17, 2008 19

Frazer Owen NRAO EVLA Vision December 17, 2008 20

Frazer Owen NRAO EVLA Vision December 17, 2008 20

Frazer Owen NRAO EVLA Vision December 17, 2008 21

Frazer Owen NRAO EVLA Vision December 17, 2008 21

Frazer Owen NRAO EVLA Vision December 17, 2008 22

Frazer Owen NRAO EVLA Vision December 17, 2008 22

Frazer Owen NRAO EVLA Vision December 17, 2008 23

Frazer Owen NRAO EVLA Vision December 17, 2008 23

Best fit opt/NIR SEDs Strazzullo et al (2009) Frazer Owen NRAO EVLA Vision December

Best fit opt/NIR SEDs Strazzullo et al (2009) Frazer Owen NRAO EVLA Vision December 17, 2008 24

Frazer Owen NRAO EVLA Vision December 17, 2008 25

Frazer Owen NRAO EVLA Vision December 17, 2008 25

Conclusions/Speculations • Star-formation and AGN activity go together: composites • Relation of AGN activity

Conclusions/Speculations • Star-formation and AGN activity go together: composites • Relation of AGN activity to evolutionary sequence still unclear but probably not related by a simple, one-time event. Too many star-forming galaxies with AGN evidence. • Deeper Herschel, XMM, EVLA data should make the picture clearer. • Deep EVLA imaging will probably be dominated by more extreme star-forming objects. May reach natural confusion. • Higher resolution radio observations from EVLA, e. Merlin and SKA may be most productive path for more understanding. • Need new imaging algorithms for EVLA /e. Merlin to make deep, wide-field images. Frazer Owen NRAO EVLA Vision December 17, 2008 26