The Internet Network layer Host router network layer

  • Slides: 39
Download presentation
The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP Network

The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP Network layer IP protocol • addressing conventions • datagram format • packet handling conventions Routing protocols • path selection • RIP, OSPF, BGP forwarding table ICMP protocol • error reporting • router “signaling” Link layer physical layer Network Layer 1

IP datagram format IP protocol version number header length (bytes) “type” of data max

IP datagram format IP protocol version number header length (bytes) “type” of data max number remaining hops (decremented at each router) upper layer protocol to deliver payload to how much overhead with TCP? r 20 bytes of TCP r 20 bytes of IP r = 40 bytes + app layer overhead 32 bits ver head. type of len service length fragment 16 -bit identifier flgs offset upper time to Internet layer live checksum total datagram length (bytes) for fragmentation/ reassembly 32 bit source IP address 32 bit destination IP address Options (if any) data (variable length, typically a TCP or UDP segment) E. g. timestamp, record route taken, specify list of routers to visit. Network Layer 2

IP Fragmentation & Reassembly r network links have MTU (max. transfer size) - largest

IP Fragmentation & Reassembly r network links have MTU (max. transfer size) - largest possible link-level frame. m different link types, different MTUs r large IP datagram divided (“fragmented”) within net m one datagram becomes several datagrams m “reassembled” only at final destination m IP header bits used to identify, order related fragments fragmentation: in: one large datagram out: 3 smaller datagrams reassembly Network Layer 3

IP Fragmentation and Reassembly Example r 4000 byte datagram r MTU = 1500 bytes

IP Fragmentation and Reassembly Example r 4000 byte datagram r MTU = 1500 bytes 1480 bytes in data field offset = 1480/8 length ID fragflag offset =4000 =x =0 =0 One large datagram becomes several smaller datagrams length ID fragflag offset =1500 =x =1 =0 length ID fragflag offset =1500 =x =1 =185 length ID fragflag offset =1040 =x =0 =370 Network Layer 4

IP Addressing: introduction r IP address: 32 -bit identifier for host, router interface: connection

IP Addressing: introduction r IP address: 32 -bit identifier for host, router interface: connection between host/router and physical link m m m router’s typically have multiple interfaces host may have multiple interfaces IP addresses associated with each interface 223. 1. 1. 1 223. 1. 1. 2 223. 1. 1. 4 223. 1. 1. 3 223. 1. 2. 1 223. 1. 2. 9 223. 1. 3. 27 223. 1. 2. 2 223. 1. 1. 1 = 11011111 00000001 223 1 1 Network Layer 1 5

Subnets r IP address: m subnet part (high order bits) m host part (low

Subnets r IP address: m subnet part (high order bits) m host part (low order bits) r What’s a subnet ? m device interfaces with same subnet part of IP address m can physically reach other without intervening router 223. 1. 1. 1 223. 1. 1. 2 223. 1. 1. 4 223. 1. 1. 3 223. 1. 2. 1 223. 1. 2. 9 223. 1. 3. 27 223. 1. 2. 2 LAN 223. 1. 3. 2 network consisting of 3 subnets Network Layer 6

Subnets Recipe r To determine the subnets, detach each interface from its host or

Subnets Recipe r To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. 223. 1. 1. 0/24 223. 1. 2. 0/24 223. 1. 3. 0/24 Subnet mask: /24 Network Layer 7

Subnets 223. 1. 1. 2 How many? 223. 1. 1. 1 223. 1. 1.

Subnets 223. 1. 1. 2 How many? 223. 1. 1. 1 223. 1. 1. 4 223. 1. 1. 3 223. 1. 9. 2 223. 1. 7. 0 223. 1. 9. 1 223. 1. 7. 1 223. 1. 8. 0 223. 1. 2. 6 223. 1. 2. 1 223. 1. 3. 27 223. 1. 2. 2 223. 1. 3. 2 Network Layer 8

IP addressing: CIDR: Classless Inter. Domain Routing m subnet portion of address of arbitrary

IP addressing: CIDR: Classless Inter. Domain Routing m subnet portion of address of arbitrary length m address format: a. b. c. d/x, where x is # bits in subnet portion of address subnet part host part 11001000 00010111 00010000 200. 23. 16. 0/23 Network Layer 9

IP addresses: how to get one? Q: How does host get IP address? r

IP addresses: how to get one? Q: How does host get IP address? r hard-coded by system admin in a file m Wintel: control-panel->network->configuration>tcp/ip->properties m UNIX: /etc/rc. config r DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server m “plug-and-play” (more in next chapter) Network Layer 10

IP addresses: how to get one? Q: How does network get subnet part of

IP addresses: how to get one? Q: How does network get subnet part of IP addr? A: gets allocated portion of its provider ISP’s address space ISP's block 11001000 00010111 00010000 200. 23. 16. 0/20 Organization 1 Organization 2. . . 11001000 00010111 00010000 11001000 00010111 00010010 0000 11001000 00010111 00010100 0000 …. 200. 23. 16. 0/23 200. 23. 18. 0/23 200. 23. 20. 0/23 …. Organization 7 11001000 00010111 00011110 0000 200. 23. 30. 0/23 Network Layer 11

Hierarchical addressing: route aggregation Hierarchical addressing allows efficient advertisement of routing information: Organization 0

Hierarchical addressing: route aggregation Hierarchical addressing allows efficient advertisement of routing information: Organization 0 200. 23. 16. 0/23 Organization 1 200. 23. 18. 0/23 Organization 2 200. 23. 20. 0/23 Organization 7 . . . Fly-By-Night-ISP “Send me anything with addresses beginning 200. 23. 16. 0/20” Internet 200. 23. 30. 0/23 ISPs-R-Us “Send me anything with addresses beginning 199. 31. 0. 0/16” Network Layer 12

Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1

Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 Organization 0 200. 23. 16. 0/23 Organization 2 200. 23. 20. 0/23 Organization 7 . . . Fly-By-Night-ISP “Send me anything with addresses beginning 200. 23. 16. 0/20” Internet 200. 23. 30. 0/23 ISPs-R-Us Organization 1 200. 23. 18. 0/23 “Send me anything with addresses beginning 199. 31. 0. 0/16 or 200. 23. 18. 0/23” Network Layer 13

IP addressing: the last word. . . Q: How does an ISP get block

IP addressing: the last word. . . Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes Network Layer 14

NAT: Network Address Translation rest of Internet local network (e. g. , home network)

NAT: Network Address Translation rest of Internet local network (e. g. , home network) 10. 0. 0/24 10. 0. 0. 1 10. 0. 0. 2 138. 76. 29. 7 10. 0. 0. 3 All datagrams leaving local network have same single source NAT IP address: 138. 76. 29. 7, different source port numbers Datagrams with source or destination in this network have 10. 0. 0/24 address for source, destination (as usual) Network Layer 15

NAT: Network Address Translation r Motivation: local network uses just one IP address as

NAT: Network Address Translation r Motivation: local network uses just one IP address as far as outside word is concerned: m no need to be allocated range of addresses from ISP: - just one IP address is used for all devices m can change addresses of devices in local network without notifying outside world m can change ISP without changing addresses of devices in local network m devices inside local net not explicitly addressable, visible by outside world (a security plus). Network Layer 16

NAT: Network Address Translation Implementation: NAT router must: m outgoing datagrams: replace (source IP

NAT: Network Address Translation Implementation: NAT router must: m outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #). . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr. m remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair m incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table Network Layer 17

NAT: Network Address Translation 2: NAT router changes datagram source addr from 10. 0.

NAT: Network Address Translation 2: NAT router changes datagram source addr from 10. 0. 0. 1, 3345 to 138. 76. 29. 7, 5001, updates table 2 NAT translation table WAN side addr LAN side addr 1: host 10. 0. 0. 1 sends datagram to 128. 119. 40, 80 138. 76. 29. 7, 5001 10. 0. 0. 1, 3345 …… …… S: 10. 0. 0. 1, 3345 D: 128. 119. 40. 186, 80 S: 138. 76. 29. 7, 5001 D: 128. 119. 40. 186, 80 138. 76. 29. 7 S: 128. 119. 40. 186, 80 D: 138. 76. 29. 7, 5001 3: Reply arrives dest. address: 138. 76. 29. 7, 5001 3 1 10. 0. 0. 4 S: 128. 119. 40. 186, 80 D: 10. 0. 0. 1, 3345 10. 0. 0. 2 4 10. 0. 0. 3 4: NAT router changes datagram dest addr from 138. 76. 29. 7, 5001 to 10. 0. 0. 1, 3345 Network Layer 18

NAT: Network Address Translation r 16 -bit port-number field: m 60, 000 simultaneous connections

NAT: Network Address Translation r 16 -bit port-number field: m 60, 000 simultaneous connections with a single LAN-side address! r NAT is controversial: m routers should only process up to layer 3 m violates end-to-end argument • NAT possibility must be taken into account by app designers, eg, P 2 P applications m address IPv 6 shortage should instead be solved by Network Layer 19

ICMP: Internet Control Message Protocol r used by hosts & routers to communicate network-level

ICMP: Internet Control Message Protocol r used by hosts & routers to communicate network-level information m error reporting: unreachable host, network, port, protocol m echo request/reply (used by ping) r network-layer “above” IP: m ICMP msgs carried in IP datagrams r ICMP message: type, code plus first 8 bytes of IP datagram causing error Type 0 3 3 3 4 Code 0 0 1 2 3 6 7 0 8 9 10 11 12 0 0 0 description echo reply (ping) dest. network unreachable dest host unreachable dest protocol unreachable dest port unreachable dest network unknown dest host unknown source quench (congestion control - not used) echo request (ping) route advertisement router discovery TTL expired bad IP header Network Layer 20

Traceroute and ICMP r Source sends series of UDP segments to dest m m

Traceroute and ICMP r Source sends series of UDP segments to dest m m m First has TTL =1 Second has TTL=2, etc. Unlikely port number r When nth datagram arrives to nth router: m m m Router discards datagram And sends to source an ICMP message (type 11, code 0) Message includes name of router& IP address r When ICMP message arrives, source calculates RTT r Traceroute does this 3 times Stopping criterion r UDP segment eventually arrives at destination host r Destination returns ICMP “host unreachable” packet (type 3, code 3) r When source gets this ICMP, stops. Network Layer 21

IPv 6 r Initial motivation: 32 -bit address space soon to be completely allocated.

IPv 6 r Initial motivation: 32 -bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding m header changes to facilitate Qo. S IPv 6 datagram format: m fixed-length 40 byte header m no fragmentation allowed Network Layer 22

IPv 6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify

IPv 6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow. ” (concept of“flow” not well defined). Next header: identify upper layer protocol for data Network Layer 23

Other Changes from IPv 4 r Checksum: removed entirely to reduce processing time at

Other Changes from IPv 4 r Checksum: removed entirely to reduce processing time at each hop r Options: allowed, but outside of header, indicated by “Next Header” field r ICMPv 6: new version of ICMP m additional message types, e. g. “Packet Too Big” m multicast group management functions Network Layer 24

Transition From IPv 4 To IPv 6 r Not all routers can be upgraded

Transition From IPv 4 To IPv 6 r Not all routers can be upgraded simultaneous m no “flag days” m How will the network operate with mixed IPv 4 and IPv 6 routers? r Tunneling: IPv 6 carried as payload in IPv 4 datagram among IPv 4 routers Network Layer 25

Tunneling Logical view: Physical view: A B IPv 6 A B C IPv 6

Tunneling Logical view: Physical view: A B IPv 6 A B C IPv 6 IPv 4 Flow: X Src: A Dest: F data A-to-B: IPv 6 E F IPv 6 D E F IPv 4 IPv 6 tunnel Src: B Dest: E Flow: X Src: A Dest: F data B-to-C: IPv 6 inside IPv 4 Flow: X Src: A Dest: F data E-to-F: IPv 6 Network Layer 26

Hierarchical Routing Our routing study thus far - idealization r all routers identical r

Hierarchical Routing Our routing study thus far - idealization r all routers identical r network “flat” … not true in practice scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would swamp links! administrative autonomy r internet = network of networks r each network admin may want to control routing in its own network Network Layer 27

Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same

Hierarchical Routing r aggregate routers into regions, “autonomous systems” (AS) r routers in same AS run same routing protocol m m Gateway router r Direct link to router in another AS “intra-AS” routing protocol routers in different AS can run different intra. AS routing protocol Network Layer 28

Interconnected ASes 3 c 3 a 3 b AS 3 1 a 2 a

Interconnected ASes 3 c 3 a 3 b AS 3 1 a 2 a 1 c 1 d 1 b Intra-AS Routing algorithm 2 c AS 2 AS 1 Inter-AS Routing algorithm Forwarding table 2 b r Forwarding table is configured by both intra- and inter-AS routing algorithm m m Intra-AS sets entries for internal dests Inter-AS & Intra-As sets entries for external dests Network Layer 29

Inter-AS tasks AS 1 needs: 1. to learn which dests are reachable through AS

Inter-AS tasks AS 1 needs: 1. to learn which dests are reachable through AS 2 and which through AS 3 2. to propagate this reachability info to all routers in AS 1 Job of inter-AS routing! r Suppose router in AS 1 receives datagram for which dest is outside of AS 1 m Router should forward packet towards on of the gateway routers, but which one? 3 c 3 a 3 b AS 3 1 a 2 a 1 c 1 d 1 b 2 c AS 2 2 b AS 1 Network Layer 30

Example: Setting forwarding table in router 1 d r Suppose AS 1 learns from

Example: Setting forwarding table in router 1 d r Suppose AS 1 learns from the inter-AS protocol that subnet x is reachable from AS 3 (gateway 1 c) but not from AS 2. r Inter-AS protocol propagates reachability info to all internal routers. r Router 1 d determines from intra-AS routing info that its interface I is on the least cost path to 1 c. r Puts in forwarding table entry (x, I). Network Layer 31

Example: Choosing among multiple ASes r Now suppose AS 1 learns from the inter-AS

Example: Choosing among multiple ASes r Now suppose AS 1 learns from the inter-AS protocol that subnet x is reachable from AS 3 and from AS 2. r To configure forwarding table, router 1 d must determine towards which gateway it should forward packets for dest x. r This is also the job on inter-AS routing protocol! r Hot potato routing: send packet towards closest of two routers. Learn from inter-AS protocol that subnet x is reachable via multiple gateways Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways Hot potato routing: Choose the gateway that has the smallest least cost Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x, I) in forwarding table Network Layer 32

Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS

Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information Protocol m OSPF: Open Shortest Path First m IGRP: Interior Gateway Routing Protocol (Cisco proprietary) Network Layer 33

RIP ( Routing Information Protocol) r Distance vector algorithm r Included in BSD-UNIX Distribution

RIP ( Routing Information Protocol) r Distance vector algorithm r Included in BSD-UNIX Distribution in 1982 r Distance metric: # of hops (max = 15 hops) u v A z C B D w x y destination hops u 1 v 2 w 2 x 3 y 3 z 2 Network Layer 34

RIP advertisements r Distance vectors: exchanged among neighbors every 30 sec via Response Message

RIP advertisements r Distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement) r Each advertisement: list of up to 25 destination nets within AS Network Layer 35

RIP: Example z w A x D B y C Destination Network w y

RIP: Example z w A x D B y C Destination Network w y z x …. Next Router Num. of hops to dest. …. . . A B B -- 2 2 7 1 Routing table in D Network Layer 36

RIP: Example Dest w x z …. Next C … w hops 4. .

RIP: Example Dest w x z …. Next C … w hops 4. . . A Advertisement from A to D z x Destination Network w y z x …. D B C y Next Router Num. of hops to dest. …. . . A B B A -- Routing table in D 2 2 7 5 1 Network Layer 37

RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link

RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead m routes via neighbor invalidated m new advertisements sent to neighbors m neighbors in turn send out new advertisements (if tables changed) m link failure info quickly propagates to entire net m poison reverse used to prevent ping-pong loops (infinite distance = 16 hops) Network Layer 38

RIP Table processing r RIP routing tables managed by application-level process called route-d (daemon)

RIP Table processing r RIP routing tables managed by application-level process called route-d (daemon) r advertisements sent in UDP packets, periodically repeated routed Transprt (UDP) network (IP) link physical Transprt (UDP) forwarding table network (IP) link physical Network Layer 39