The inclusion of fermions Weyl spinors Dirac spinor

  • Slides: 16
Download presentation
The inclusion of fermions Weyl spinors Dirac spinor 2 -component spinors of SU(2) Rotations

The inclusion of fermions Weyl spinors Dirac spinor 2 -component spinors of SU(2) Rotations and Boosts Dirac Gamma matrices Weyl basis

The Dirac equation Fermions described by 4 -cpt Dirac spinors Lorentz invariant New 4

The Dirac equation Fermions described by 4 -cpt Dirac spinors Lorentz invariant New 4 -vector The Lagrangian Dimension? From Euler Lagrange equation obtain the Dirac equation Feynman rules U(1) symmetry

The Standard Model where

The Standard Model where

The strong interactions QCD Quantum Chromodynamics SU(3) Symmetry : Local conservation of 3 strong

The strong interactions QCD Quantum Chromodynamics SU(3) Symmetry : Local conservation of 3 strong colour charges QCD : a non-Abelian (SU(3)) local gauge field theory

The strong interactions QCD Quantum Chromodynamics Symmetry : Local conservation of 3 strong colour

The strong interactions QCD Quantum Chromodynamics Symmetry : Local conservation of 3 strong colour charges SU(3) Strong coupling, α 3 q q Ga=1. . 8 Gauge boson (J=1) “Gluons” QCD : a non-Abelian (SU(3)) local gauge field theory

Weak Interactions Fermi theory of decay } velocity Left-handed m=0 Right-handed

Weak Interactions Fermi theory of decay } velocity Left-handed m=0 Right-handed

Weak Interactions Fermi theory of decay } p n W+ e e V-A

Weak Interactions Fermi theory of decay } p n W+ e e V-A

Weak Interactions Symmetry : SU(2) local gauge theory Local conservation of 2 weak isospin

Weak Interactions Symmetry : SU(2) local gauge theory Local conservation of 2 weak isospin charges Weak coupling, α 2 u d Wa=1. . 3 Gauge boson (J=1) e Neutral currents A non-Abelian (SU(2)) local gauge field theory

Massive vector propagator (W, Z bosons) Free particle solution Helicity polarisation vectors

Massive vector propagator (W, Z bosons) Free particle solution Helicity polarisation vectors

Propagation of unstable scalar particle No decay i. J …. . . i. J

Propagation of unstable scalar particle No decay i. J …. . . i. J Particle decays into final state n } Optical theorem – conservation of probability, time evolution is unitary

Fermi theory (‘ 40 s) The hard part!

Fermi theory (‘ 40 s) The hard part!

In μ decay

In μ decay

Fundamental principles of particle physics Introduction - Fundamental particles and interactions Symmetries I -

Fundamental principles of particle physics Introduction - Fundamental particles and interactions Symmetries I - Relativity Quantum field theory - Quantum Mechanics + relativity Theory confronts experiment - Cross sections and decay rates Symmetries II – Gauge symmetries, the Standard Model Fermions and the weak interactions The Standard Model and Beyond Have Fun!