The CMOS Inverter Lecture 3 Static properties VTC

  • Slides: 28
Download presentation
The CMOS Inverter Lecture 3 Static properties (VTC and noise margins)

The CMOS Inverter Lecture 3 Static properties (VTC and noise margins)

Where are we? Inverter Logic gates P-type pull-up network P OUT IN IN N

Where are we? Inverter Logic gates P-type pull-up network P OUT IN IN N Designing w switches 2017 -09 -05 OUT N-type Pull-down network Hands-on lab session MCC 092 IC Design - Lecture 3: The Inverter 2

Where are we? Inverter Logic gates P-type pull-up network 1 0 OUT IN N-type

Where are we? Inverter Logic gates P-type pull-up network 1 0 OUT IN N-type Pull-down network Designing w switches 2017 -09 -05 Hands-on lab session MCC 092 IC Design - Lecture 3: The Inverter 2

Where are we? Inverter Logic gates P-type pull-up network 0 1 OUT IN N-type

Where are we? Inverter Logic gates P-type pull-up network 0 1 OUT IN N-type Pull-down network Designing w switches 2017 -09 -05 Hands-on lab session MCC 092 IC Design - Lecture 3: The Inverter 2

Where are we? Inverter VSW IDS Logic gates P-type pull-up network VSW OUT IN

Where are we? Inverter VSW IDS Logic gates P-type pull-up network VSW OUT IN N-type Pull-down network Designing w switches 2017 -09 -05 Hands-on lab session MCC 092 IC Design - Lecture 3: The Inverter 2

MOSFET I/V Characteristics IDS ON Saturation: IDSN=IDSAT, N IDSN=GONVDS OFF: IDS=0 VDS IDSP=GONVDS Saturation:

MOSFET I/V Characteristics IDS ON Saturation: IDSN=IDSAT, N IDSN=GONVDS OFF: IDS=0 VDS IDSP=GONVDS Saturation: IDSP=IDSAT, P 2017 -09 -05 ON MCC 092 IC Design - Lecture 3: The Inverter 3

MOSFET I/V Characteristics IDS ON Saturation: ISDP=IDSAT, P ON ISDP=GONVSD OFF: IDS=0 2017 -09

MOSFET I/V Characteristics IDS ON Saturation: ISDP=IDSAT, P ON ISDP=GONVSD OFF: IDS=0 2017 -09 -05 Saturation: IDSN=IDSAT, N IDSN=GONVDS OFF: IDS=0 MCC 092 IC Design - Lecture 3: The Inverter VDS 3

MOSFET I/V Characteristics IDS ON Saturation: IDSN=IDSAT, N Saturation: IDSP=IDSAT, P IDSN=GONVDS OFF: IDS=0

MOSFET I/V Characteristics IDS ON Saturation: IDSN=IDSAT, N Saturation: IDSP=IDSAT, P IDSN=GONVDS OFF: IDS=0 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter VDS 3

VIN/VOUT voltage plane VOUT VDD, VDD NMOS OFF NMOS VIN PMOS OFF VDD PMOS

VIN/VOUT voltage plane VOUT VDD, VDD NMOS OFF NMOS VIN PMOS OFF VDD PMOS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 4

VIN/VOUT voltage plane NMOS OFF VDD, VDD PMOS OFF VOUT VDD 2017 -09 -05

VIN/VOUT voltage plane NMOS OFF VDD, VDD PMOS OFF VOUT VDD 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter VIN 5

Voltage Transfer Characteristic - VTC Inverter VDD 0 NMOS OFF IDS, P=0 1 IDS,

Voltage Transfer Characteristic - VTC Inverter VDD 0 NMOS OFF IDS, P=0 1 IDS, N=0 VDD, VDD PMOS OFF VOUT IDS VDD VIN The ON p-switch pulls the output high VDS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 6: 1

Voltage Transfer Characteristic - VTC Inverter VDD 1 NMOS OFF IDS, P=0 0 IDS,

Voltage Transfer Characteristic - VTC Inverter VDD 1 NMOS OFF IDS, P=0 0 IDS, N=0 VDD, VDD PMOS OFF VOUT IDS VDD VIN The ON n-switch pulls the output low VDS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 6: 2

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF VOUT IDS VDD Switching occurs in the green region where both MOSFETs are saturated! And saturation currents are equal: Saturation: IDSP, N=IDSAT, P VDS 2017 -09 -05 VIN Solving for VIN using x=k. N/k. P yields MCC 092 IC Design - Lecture 3: The Inverter 6: 3

Voltage Transfer Characteristic - VTC Inverter IDS VSW NMOS OFF VSW VDD DV VSW

Voltage Transfer Characteristic - VTC Inverter IDS VSW NMOS OFF VSW VDD DV VSW VDD, VDD PMOS OFF VOUT IDS VDD VIN The switching voltage equation Saturation: IDSP, N=IDSAT, P can be rewritten on a form easier to grasp if we introduce VDS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 6: 3

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF VOUT IDS VDD VIN Equal currents in top blue region yields VOUT vs. VIN! VDS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 6: 4

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF

Voltage Transfer Characteristic - VTC Inverter IDS NMOS OFF VSW VDD, VDD PMOS OFF VOUT IDS VDD VIN Equal currents in bottom blue region yields VOUT vs. VIN! VDS 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 6: 5

The voltage characteristic (VTC) VOUT For x=k. N/k. P=1 we have VDD What if

The voltage characteristic (VTC) VOUT For x=k. N/k. P=1 we have VDD What if we make n-channel MOSFET wider, i. e. for x>1? What happens to VTC? Will switching voltage VSW increase or decrease? Assume x=4 and we have Assume x=1/4 and we have 0 2017 -09 -05 0 VTN VSW MCC 092 IC Design - Lecture 3: The Inverter VDD+VTP VDD VIN 7

The voltage characteristic (VTC) Which VTC is NAND and VOUT which VTC is NOR?

The voltage characteristic (VTC) Which VTC is NAND and VOUT which VTC is NOR? VDD NAND NOR 0 2017 -09 -05 0 VTN VSW MCC 092 IC Design - Lecture 3: The Inverter VDD+VTP VDD VIN 8

The voltage characteristic (VTC) VOUT How about current n-channel MOSFET saturated for VIN<VSW flow?

The voltage characteristic (VTC) VOUT How about current n-channel MOSFET saturated for VIN<VSW flow? No current flow in red VDD regions! ”short-circuit” current ISC flows in blue/green regions p-channel MOSFET saturated for VIN>VSW 0 2017 -09 -05 0 VTN VSW MCC 092 IC Design - Lecture 3: The Inverter VDD+VTP VDD VIN 9

Noise Margins- NML VDD Valid ” 1” VDD VIN VOUT VOH, min VIL, max

Noise Margins- NML VDD Valid ” 1” VDD VIN VOUT VOH, min VIL, max Valid ” 1” Valid ” 0” VIN not valid NMH VOL, max Valid ” 0” VIL, max 2017 -09 -05 VIH, min VIN MCC 092 IC Design - Lecture 3: The Inverter 10 VOUT 0

Noise Margins- NML VDD Valid ” 1” VDD VIN VOUT VIL, max NML VIH,

Noise Margins- NML VDD Valid ” 1” VDD VIN VOUT VIL, max NML VIH, min Valid ” 1” VIN not valid VOH, min VOL, max 0 VIL, max 2017 -09 -05 VIH, min VIN MCC 092 IC Design - Lecture 3: The Inverter 11 VOUT 0 Valid ” 0”

Butterfly Diagram VOUT VDD Valid ” 1” VOH, min Memory cell characterization NMH VIN

Butterfly Diagram VOUT VDD Valid ” 1” VOH, min Memory cell characterization NMH VIN VOUT NML 0 Valid ” 0” 0 VIL, max 2017 -09 -05 VIH, min VOL, max VIN MCC 092 IC Design - Lecture 3: The Inverter 12

Noise Margins – skewed inverters NMH NML 2017 -09 -05 NMH MCC 092 IC

Noise Margins – skewed inverters NMH NML 2017 -09 -05 NMH MCC 092 IC Design - Lecture 3: The Inverter 13

Noise Margins – an example Let´s define valid regions from points where slope AV

Noise Margins – an example Let´s define valid regions from points where slope AV = -1! VOUT NMH=VOH, min-VIH, min NML=VIL, max- VOL, max These points yields VDD numbers for VOH, min (VOH, min, VIL, max) and (VOL, max, VIH, min) so that NMH and NML can be calculated! Valid ” 1” VOL, max 0 2017 -09 -05 Valid ” 0” 0 VIL, max VIH, min MCC 092 IC Design - Lecture 3: The Inverter VDD VIN 14

Noise Margins – an example Let´s define valid regions from points where slope AV

Noise Margins – an example Let´s define valid regions from points where slope AV = -1! NMH=VOH, min-VIH, min 1. 12 -0. 68=0. 44 V NML=VIL, max- VOL, max = 0. 52 -0. 08=0. 44 V VOUT DV=0. 64 V 0. 28 V These points yields VDD numbers for VOH, min (VOH, min, VIL, max) and (VOL, max, VIH, min) so that NMH and NML can be calculated! For x=1, VTN=0. 28 V and VTP=-0. 28 V we have VSW=0. 28+0. 64/2=0. 60 V and DV=0. 64 V Formulas can be derived (for x=1): VOH, min=VDD-DV/8=1. 12 -DV/8 V VOL, max = DV/8=80 DV/8 m. V VOL, max VIL, max=VSW-DV/8=0. 52 -DV/8 V 0 VIH, min=VSW+DV/8=0. 68 +DV/8 V 2017 -09 -05 Valid ” 1” DV/8 Valid ” 0” 0 0. 28 V VIL, max VIH, min MCC 092 IC Design - Lecture 3: The Inverter VDD VIN 15

Summary • • CMOS inverter – schematic Voltage transfer characteristics (VTC) How to calculate

Summary • • CMOS inverter – schematic Voltage transfer characteristics (VTC) How to calculate switching voltage VSW Understand VSW dependence on k. N/k. P Understand switching current (ISC) flow Noise margins NMH and NML Butterfly diagram Match current curves 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 16

Why not n-switches in pull-up networks? Initial value before switch is turned ON: VOUT=0

Why not n-switches in pull-up networks? Initial value before switch is turned ON: VOUT=0 VDD Register cell Logic “one” VOUT VIN Adder cell p-switch IDS VDD Equivalent circuit: VDD VOUT GND VDD VOUT=VDD-VTN 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 27

Why not p-switches in pull-down networks? Initial value before switch is turned ON: VOUT=VDD

Why not p-switches in pull-down networks? Initial value before switch is turned ON: VOUT=VDD Register cell Logic “zero” VOUT VIN Adder cell p-switch IDS VDD Equivalent circuit: VOUT VSS GND VDD VOUT=-VTP 2017 -09 -05 MCC 092 IC Design - Lecture 3: The Inverter 28