The 3 rd KAGRA International Workshop Academia Sinica

  • Slides: 25
Download presentation
The 3 rd KAGRA International Workshop @ Academia Sinica May 22, 2017 Possibility of

The 3 rd KAGRA International Workshop @ Academia Sinica May 22, 2017 Possibility of Upgrading KAGRA Yuta Michimura Department of Physics, University of Tokyo with much help from Kentaro Komori, Yutaro Enomoto, Koji Nagano, Kentaro Somiya, Sadakazu Haino ……

KAGRA Timeline 2016 Initial KAGRA (i. KAGRA) 2017 3 -km Michelson room temperature simplified

KAGRA Timeline 2016 Initial KAGRA (i. KAGRA) 2017 3 -km Michelson room temperature simplified suspensions First test operation Phase 1 3 -km Michelson cryogenic temperature 2019 Phase 2 3 -km RSE cryogenic temperature 2020 Phase 3 3 -km RSE cryogenic temperature observation runs 2018 2021 2022 KAGRA+ ? Baseline KAGRA (b. KAGRA) 2025? ~ LIGO Voyager 2035? ~ Cosmic Explorer Einstein Telescope 2

KAGRA Configuration ETMY Cryogenic Sapphire Mirrors (~20 K) 3 km • Cryogenic • Underground

KAGRA Configuration ETMY Cryogenic Sapphire Mirrors (~20 K) 3 km • Cryogenic • Underground • Resonant Sideband Extraction (RSE) interferometer IMC IFI PRM PR 2 ITMX Laser 1064 nm, 200 W Laser Source ITMY PR 3 3 km BS SR 3 ETMX SR 2 SRM GW signal 3

KAGRA Sensitivity (v 2017) • BNS range 158 Mpc, BBH(30 Msun) range 1. 0

KAGRA Sensitivity (v 2017) • BNS range 158 Mpc, BBH(30 Msun) range 1. 0 Gpc +Mir Quantum ror n ting o nsi spe NN Coa mic+ L Su Seis SQ 4

KAGRA vs Other 2 G • Not better even with cryogenic and underground O

KAGRA vs Other 2 G • Not better even with cryogenic and underground O 1 a. LIGO KAGRA Spectra data from LIGO-T 1500293 Ad. Virgo 5

Seismic Noise m Seis • Basically low, thanks to underground and tower suspensions ic

Seismic Noise m Seis • Basically low, thanks to underground and tower suspensions ic Plot by A. Shoda (JGW-G 1706740) Virgo TAMA KAGRA 6

Thermal Noise ting ion ns Coa pe Figure from K. Craig s Su •

Thermal Noise ting ion ns Coa pe Figure from K. Craig s Su • Cryogenic temperature high Q (low loss) sapphire reduces thermal noise • Thick sapphire fibers to extract heat increase suspension thermal noise • Smaller beam sizes because of smaller mirrors increase coating thermal noise 7

Quantum Noise • 23 kg mirror was the largest um sapphire mirror we can

Quantum Noise • 23 kg mirror was the largest um sapphire mirror we can get t n a (a. LIGO: 40 kg, Ad. Virgo: 42 kg) Qu • Smaller mirror increases radiation pressure noise • Less laser power because of limited heat extraction increases shot noise Intra-cavity power KAGRA: 400 k. W, a. LIGO/Ad. Virgo: 700 k. W 8

Ideas for Improving Sensitivity • Increase the mass A-axis (Czochralski process) - GAST project

Ideas for Improving Sensitivity • Increase the mass A-axis (Czochralski process) - GAST project (upto 30 cm dia. ? ) - composite mass - A-axis sapphire (upto 50 kg, 26 cm dia. ) - non-cylindrical mass (upto 30 kg) - go silicon (upto 200 kg, 45 cm dia. ) C-axis (no birefringence) • Frequency dependent squeezing (Filter cavity) - effectively increase mass and laser power • Better coating, low absorption mirror • Better cryogenic suspension design • ETM different from ITM, half-cryogenic, delay-line, folded arms, higher-order modes, suspension point interferometer …… ? ? ? 9

Effect in Sensitivity Heavier mass BHs Heavier mass Better suspensions Lower power EOS of

Effect in Sensitivity Heavier mass BHs Heavier mass Better suspensions Lower power EOS of NS, SN, etc. Higher power Better coating Larger beam size 10

Integrated Design Study • We need a plan to integrate these ideas • To

Integrated Design Study • We need a plan to integrate these ideas • To begin with, some example plans were proposed • Plan: Blue (by Yutaro Enomoto) use heavier sapphire mirrors (working title) • Plan: Black (by Kentaro Komori) use silicon mirrors • Plan: Brown (by Koji Nagano) lower the power to focus on low frequency • Plan: Red (by Sadakazu Haino) increase the power to focus on high frequency 11

KAGRA+ Sensitivity: Blue • Heavier sapphire and heavier IM, 20 K SQ ic+NN Seism

KAGRA+ Sensitivity: Blue • Heavier sapphire and heavier IM, 20 K SQ ic+NN Seism BNS 296 Mpc BBH 2. 7 Gpc L ting ro r n sio en sp +Mir Su Coa Mass: 73 kg (36 cm dia. , 18 cm thick) P_BS: 620 W Fiber: 35 cm 1. 7 mm dia. φ_susp: 2 e-7 Quantum φ_coat: 5 e-4 r_beam: 5. 7 cm 100 m F. C. 10 d. B input sqz T_SRM: 32 % 12

KAGRA+ Sensitivity: Black • Silicon 123 K, 1550 nm, radiative cooling SQ ic+NN Seism

KAGRA+ Sensitivity: Black • Silicon 123 K, 1550 nm, radiative cooling SQ ic+NN Seism BNS 296 Mpc BBH 3. 2 Gpc L Coa ting +Mir n sio en sp Su ror Mass: 114 kg (50 cm dia. , 25 cm thick) P_BS: 500 W Fiber: 30 cm, 0. 8 mm dia. φ_susp: 1 e-8 Quantum φ_coat: 1 e-4 r_beam: 8. 6 cm 100 m F. C. 10 d. B input sqz T_SRM: 16 % 13

KAGRA+ Sensitivity: Brown • Same test mass, low power, high detuning, 20 K Seism

KAGRA+ Sensitivity: Brown • Same test mass, low power, high detuning, 20 K Seism BNS 133 Mpc BBH 1. 7 Gpc Quantum ic+NN SQ L Coa ting +Mir n sio en sp Su ror Mass: 23 kg (22 cm dia. , 15 cm thick) P_BS: 5. 7 W Fiber: 88 cm, 0. 32 mm dia. φ_susp: 2 e-7 φ_coat: 5 e-4 r_beam: 3. 5 cm No sqz T_SRM: 4. 35 % 14

KAGRA+ Sensitivity: Red • Same test mass, high power, 24 K SQ ic+NN Seism

KAGRA+ Sensitivity: Red • Same test mass, high power, 24 K SQ ic+NN Seism BNS 191 Mpc BBH 0. 8 Gpc L ror n sio en +Mir sp ting Su Coa Mass: 23 kg (22 cm dia. , 15 cm thick) P_BS: 5. 7 W Fiber: 20 cm, 2. 4 mm dia. Quantum φ_susp: 2 e-7 φ_coat: 5 e-4 r_beam: 3. 5 cm No sqz T_SRM: 4. 94 % 15

Sensitivity Comparison • Also feasibility study necessary Low freq. Ad. Virgo KAGRA Silicon Heavier

Sensitivity Comparison • Also feasibility study necessary Low freq. Ad. Virgo KAGRA Silicon Heavier sapphire a. LIGO High freq. Voyager NOTE: KAGRA+ curves expect almost no coating improvements 16

Astrophysical Reach Comparison • Science case discussion is necessary Silicon Heavier sapphire High freq.

Astrophysical Reach Comparison • Science case discussion is necessary Silicon Heavier sapphire High freq. Low freq. Code provided by M. Ando Optimal direction and polarization SNR threshold 8 b. KAGRA 17

Discussions • What is the best figure of merit to compare the plans? -

Discussions • What is the best figure of merit to compare the plans? - Sensitivity curve (with error bars)? - Inspiral range? What mass? - Event rate (with error bars)? - Parameter estimation accuracy? • Broadband or narrowband in high event rate regime by a. LIGO + Ad. Virgo? - Does 4 th detector help parameter estimation? • What about real 3 G detector (~10 km class)? - Asia-Australian 8 -km detector? - Where? 18

Summary • Many ideas for improving the sensitivity have been proposed, and some R&D

Summary • Many ideas for improving the sensitivity have been proposed, and some R&D are on going • Sensitivity design study on future KAGRA upgrade to integrate these ideas is necessary • Some example plans are proposed • Need more serious discussion based on science, feasibility, budget and timeline • Any comments? New ideas? 19

Supplementary Slides

Supplementary Slides

2 G/2 G+ Parameter Comparison KAGRA Ad. Virgo a. LIGO A+ Voyager Arm length

2 G/2 G+ Parameter Comparison KAGRA Ad. Virgo a. LIGO A+ Voyager Arm length [km] 3 3 4 4 4 Mirror mass [kg] 23 42 40 80 200 Mirror material Sapphire Silica Silicon Mirror temp [K] 21 295 295 123 Sus fiber 35 cm Sap. 70 cm Si. O 2 60 cm Si Fiber type Fiber Ribbon Input power [W] 78 125 125 140 Arm power [k. W] 400 710 1150 3000 Wavelength [nm] 1064 2000 3. 5 / 3. 5 4. 9 / 5. 8 5. 5 / 6. 2 5. 8 / 6. 2 0 0 0 6 8 none 16 300 Beam size [cm] SQZ factor F. C. length [m] LIGO parameters from LIGO-T 1600119, Ad. Virgo parameters from JPCS 610, 01201 (2015) 21

KAGRA Detailed Parameters • • • Optical parameters - Mirror transmission: 0. 4 %

KAGRA Detailed Parameters • • • Optical parameters - Mirror transmission: 0. 4 % for ITM, 10 % for PRM, 15. 36 % for SRM - Power at BS: 780 W - Detune phase: 3. 5 deg (DRSE case) - Homodyne phase: 133 deg (DRSE case) Sapphire mirror parameters - TM size: 220 mm dia. , 150 mm thick - TM mass: 22. 8 kg - TM temperature: 21. 5 K - Beam radius at ITM: 3. 5 cm - Beam radius at ETM: 3. 5 cm - Q of mirror substrate: 1 e 8 - Coating: tantala/silica - Coating loss angle: 3 e-4 for silica, 5 e-4 for tantala - Number of layers: 9 for ITM, 18 for ETM - Coating absorption: 0. 5 ppm - Substrate absorption: 20 ppm/cm Suspension parameters - TM-IM fiber: 35 cm long, 1. 6 mm dia. - IM temperature: 16. 3 K - Heat extraction: 6580 W/m/K - Loss angle: 5 e-6/2 e-7/7 e-7 for Cu. Be fiber? /sapphire fiber/sapphire blade Inspiral range calculation - SNR=8, fmin=10 Hz, sky average constant 0. 442478 Seismic noise curve includes vertical coupling, vibration from 22 heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload Provided by T. Ushiba and T. Miyamoto 3 Cu. Be blade springs

KAGRA Cryopayload Provided by T. Ushiba and T. Miyamoto 3 Cu. Be blade springs Platform (SUS, 65 kg) Marionette (SUS, 22. 5 kg) Intermediate Mass (SUS, 20. 1 kg, 16. 3 K) Test Mass (Sapphire, 23 kg, 21. 5 K) MN suspended by 1 Maraging steel fiber (35 cm long, 2 -7 mm dia. ) MRM suspended by 3 Cu. Be fibers Heat link attached to MN IM suspended by 4 Cu. Be fibers (24 cm long, 0. 6 mm dia) IRM suspended by 4 Cu. Be fibers 4 sapphire blades TM suspended by 4 sapphire fibers (35 cm long, 1. 6 mm dia. ) RM suspended by 4 Cu. Be fibers 23

Newtonian Noise from Water • Measured v = 0. 5~2 m/s → seems OK

Newtonian Noise from Water • Measured v = 0. 5~2 m/s → seems OK Atsushi Nishizawa, JGW-G 1706438 24

2 -3 G Sensitivity Comparison KAGRA Ad. Virgo a. LIGO ET-D Spectra data from

2 -3 G Sensitivity Comparison KAGRA Ad. Virgo a. LIGO ET-D Spectra data from LIGO-T 1500293 A+ Voyager CE 25