Tevatron Run II Chicago CDF TEVATRON D 0

  • Slides: 36
Download presentation

Tevatron Run II Chicago CDF TEVATRON D 0 MAIN INJECTOR n n n The

Tevatron Run II Chicago CDF TEVATRON D 0 MAIN INJECTOR n n n The world's highest-energy particle collider. (Until LHC starts. ) Proton-antiproton collisions at sqrt(s) = 1. 96 Te. V Tevatron is performing really well n Peak luminosity: ~3. 5 1032 cm-2 s-1 2009/09/11 日本物理学会 2009年秋季大会 2

Datasets Summer 2009 shutdown Detector is stable and working well 5. 3 fb 1

Datasets Summer 2009 shutdown Detector is stable and working well 5. 3 fb 1 6. 8 fb 1 5. 7 fb 1 Summer conference dataset. Require good runs 4. 4 -4. 8 fb 1 2009/09/11 日本物理学会 2009年秋季大会 3

13 Tevatron Prospects 12 11 10 8 7 6 5 4 3 2 Integrated

13 Tevatron Prospects 12 11 10 8 7 6 5 4 3 2 Integrated luminosity (fb-1) 9 Running through FY 10 will yield 7 fb– 1 of data for analysis FY 11 start Running through FY 11 would yield 9 -10 fb– 1 of data for analysis FY 10 start 12. 0 fb-1 10. 0 fb-1 Highest Int. Lum Lowest Int. Lum Real data for FY 02 -FY 09 1 0 9 0 5 6 7 1 4 8 7 3 4 5 6 8 9 0 1 200 1/200 2/200 3/200 4/200 5/200 6/201 7/201 / 1 4/ 4/ 4/ time 4/ 4/ 4/ FY 04 10/ since 10/ 10/ 2009/09/11 日本物理学会 2009年秋季大会 4

CDF Collaboration North America 34 institutions Europe 21 institutions Asia 8 institutions The CDF

CDF Collaboration North America 34 institutions Europe 21 institutions Asia 8 institutions The CDF Collaboration 15 countries 63 institutions 602 authors 2009/09/11 日本物理学会 2009年秋季大会 5

CDF II Detector n n n 8 layer silicon vertex detector 8 super layer

CDF II Detector n n n 8 layer silicon vertex detector 8 super layer drift chamber 1. 4 T solenoid Good particle identification (K, p) Central/Wall/Plug calorimeters Scintillator+drift chamber muon detectors 2009/09/11 日本物理学会 2009年秋季大会 6

Top Quark Physics quark-antiquark annihilation gluon-gluon fusion ~85% n ~15% Pair production n s(NLO)

Top Quark Physics quark-antiquark annihilation gluon-gluon fusion ~85% n ~15% Pair production n s(NLO) = 7. 4 +0. 5 -0. 7 pb (mt=172. 5 Ge. V) n Single production n n s-channel: s(NLO) = 0. 99 0. 07 pb t-channel: s(NLO) = 2. 15 0. 24 pb (mt=170 Ge. V) n Observed in March 2009. Categorize ttbar events into 3 decay types according to W decay mode (日本物理学会 第 64回年次大会 28 a. SE 08) 2009/09/11 日本物理学会 2009年秋季大会 7

ttbar Production Cross Section n Lepton+jets channel n Two different methods n n n

ttbar Production Cross Section n Lepton+jets channel n Two different methods n n n Topological separation of signal and background via neural net Counting method with b-tagged events. Reduce luminosity systematics by normalizing to Z l+l rate 2009/09/11 日本物理学会 2009年秋季大会 8

ttbar Production Cross Section n Dilepton channel n n 2 leptons, large MET Require

ttbar Production Cross Section n Dilepton channel n n 2 leptons, large MET Require 1 b-tag n n Low background, lower statistics 2009/09/11 All-hadronic channel 6 jets, 1 or 2 b-tags Enormous QCD background n Train NN to improve S/B 日本物理学会 2009年秋季大会 9

ttbar Production Cross Section n CDF Combination n 2009/09/11 日本物理学会 2009年秋季大会 Precision of 6.

ttbar Production Cross Section n CDF Combination n 2009/09/11 日本物理学会 2009年秋季大会 Precision of 6. 5% All channels are consistent with each other and with theory. Different methods to measure stt produce consistent results 10

ttbar+jet Cross Section n n Lepton+jets channel with b-tagging Check for NLO effects n

ttbar+jet Cross Section n n Lepton+jets channel with b-tagging Check for NLO effects n (ETJET > 20 Ge. V) SM prediction: (S. Dittmaier, P. Uwer, and S. Weinzierl, Eur. Phys. J. C 59, 625 (2009)) 2009/09/11 日本物理学会 2009年秋季大会 11

Top Mass Measurement Using Matrix Element Method n n Matrix element analysis in l+jets

Top Mass Measurement Using Matrix Element Method n n Matrix element analysis in l+jets Dominant mass systematic uncertainty typically due to a lack of understanding of the hadronic jet energy scale. n Simultaneously fit for top quark mass and shift in jet energy scale (JES). n n 2009/09/11 JES constrained by the hadronically decaying W qq' In situ calibration of the hadronic energy response 日本物理学会 2009年秋季大会 12

Top Mass Measurement Using Lepton p. T n n Lepton p. T spectrum dependent

Top Mass Measurement Using Lepton p. T n n Lepton p. T spectrum dependent upon mtop. Advantages: n n n L+J Decouples from jet energy scale Might be a good technique for LHC DIL Disadvantages n n Requires large event samples Model dependence on ttbar production 2009/09/11 日本物理学会 2009年秋季大会 13

ttbar Spin Correlation Top quark is supposed to decay before losing polarization at its

ttbar Spin Correlation Top quark is supposed to decay before losing polarization at its production (decays as a bare quark). But not yet confirmed experimentally. 。 照 Off-diagonal basis 参 を We can see correlations between flight directions of decay products. ク トー の 9 0 SA 細 p 1 1 SM は 詳 Signal Templates( =-1 1) or Background Templates 2009/09/11 (Mt = 175 Ge. V/c 2) 日本物理学会 2009年秋季大会 14

Forward-Backward Asymmetry n In L=3. 2 fb-1 data sample, observed an integral asymmetry: (Cf.

Forward-Backward Asymmetry n In L=3. 2 fb-1 data sample, observed an integral asymmetry: (Cf. 日本物理学会 第 64回年次大会 28 a. SE 06) n n Is “excess” spread out or localized in mass? More than 2 s excess from NLO prediction AFBpp = 5 1. 5% n n 2009/09/11 Dashed line are predictions for a integral AFB=19. 3%, as measured in data, with no mass dependence. Green solid line is for a NLL prediction (Almeida et al. ar. Xiv: 0805. 1885) with AFB linearly dependent on partonic invariant mass. 日本物理学会 2009年秋季大会 15

Search for ttbar Resonance n n n Some models predict ttbar bound states Top

Search for ttbar Resonance n n n Some models predict ttbar bound states Top color assisted technicolor predicts leptophobic Z’ with strong 3 rd generation coupling Search in all hadronic channel Z’ with 1. 2% widt CDF (2. 8 fb 1): >805 Ge. V Z’ 2009/09/11 日本物理学会 2009年秋季大会 16

SM Higgs Search n Cross Section and Branching Ratio @Tevatron 2009/09/11 日本物理学会 2009年秋季大会 17

SM Higgs Search n Cross Section and Branching Ratio @Tevatron 2009/09/11 日本物理学会 2009年秋季大会 17

Higgs Search Channels ZH llbb H WW l l ZH bb ~6 months data

Higgs Search Channels ZH llbb H WW l l ZH bb ~6 months data Total WH l bb 2009/09/11 H WW lnln WH lnbb ZH nnbb ZH llbb 日本物理学会 2009年秋季大会 18

Low Mass Higgs: ZH llbb n n n Improve lepton acceptance Use neural network

Low Mass Higgs: ZH llbb n n n Improve lepton acceptance Use neural network to correct jets for missing energy Use matrix elements and NN for event selection For m. H = 115 Ge. V/c 2 n Expected limit: 6. 8 s. SM n Observed limit: 5. 9 s. SM 2009/09/11 日本物理学会 2009年秋季大会 19

Low Mass Higgs: ZH/WH Search in MET+jets n n Good signal acceptance, complementary to

Low Mass Higgs: ZH/WH Search in MET+jets n n Good signal acceptance, complementary to other searches n Sensitive to: ZH bb, ZH llbb (mostly t), WH l bb (missed l) Dominant backgrounds: For m = 115 Ge. V/c 2 n n n QCD with fake MET due to cal resolution W/Z+jets, top, diboson b-tagging and neural net selection 2009/09/11 H n n Expected limit: 4. 2 s. SM Observed limit: 6. 1 s. SM 日本物理学会 2009年秋季大会 20

Low Mass Higgs: WH l bb n n n Bayesian NN selection New NN

Low Mass Higgs: WH l bb n n n Bayesian NN selection New NN b-jet energy correction 4 b-tagging categories n For m. H = 115 Ge. V/c 2 n Expected limit: 4. 0 s. SM n Observed limit: 5. 3 s. SM New: NN b-tag 2009/09/11 日本物理学会 2009年秋季大会 21

High Mass Higgs: H WW* n n n Opposite sign leptons: H WW l

High Mass Higgs: H WW* n n n Opposite sign leptons: H WW l l Same sign leptons for WH WWW Improved lepton acceptance Better lepton ID (likelihood) Better acceptance and improved sensitivity at low dilepton mass region Train NN for each category n OS 0/1/2+ jets, SS, OS low Mll 2009/09/11 日本物理学会 2009年秋季大会 For m. H = 165 Ge. V/c 2 n Expected limit: 1. 21 s. SM n Observed limit: 1. 23 s. SM 22

Combined Limit on Higgs n m. H = 115 Ge. V/c 2 n n

Combined Limit on Higgs n m. H = 115 Ge. V/c 2 n n n Expected limit: 2. 53 s. SM Observed limit: 3. 62 s. SM m. H = 160 Ge. V/c 2 n n Expected limit: 1. 29 s. SM Observed limit: 1. 24 s. SM 2009/09/11 日本物理学会 2009年秋季大会 23

Searches for New Physics n 2009/09/11 Mainly SUSY search results this time. 日本物理学会 2009年秋季大会

Searches for New Physics n 2009/09/11 Mainly SUSY search results this time. 日本物理学会 2009年秋季大会 24

Sbottom Pair Production in MSSM n For 3 rd gen squarks, large mixing could

Sbottom Pair Production in MSSM n For 3 rd gen squarks, large mixing could lead to one of the stop and sbottom quarks to be light n n n Large cross section at Tevatron Signature: 2 high ET b-jets and MET QCD background (mistags/heavy flavor) estimated from untagged samples. 2009/09/11 日本物理学会 2009年秋季大会 ~b ~b b ~c ~c 0 0 b 25

Stop Decaying into Charm and Neutralino n n n If stop is light and

Stop Decaying into Charm and Neutralino n n n If stop is light and stop chargino+b is kinematically forbidden, then stop neutralino+c might dominate. Signature: two charm jets + MET Developed a flavor separator to enhance charm separation 2009/09/11 日本物理学会 2009年秋季大会 26

Stop Search in Dilepton Channel n If the sneutrinos are lighter than stop, the

Stop Search in Dilepton Channel n If the sneutrinos are lighter than stop, the dominant decay is into leptons. n n Signature similar to ttbar dileptons, but with soft leptons. Kinematics slightly different due to sneutrino mass. 2009/09/11 日本物理学会 2009年秋季大会 27

Stop Decaying into Bottom and Chargino n When stop is more massive than the

Stop Decaying into Bottom and Chargino n When stop is more massive than the lightest chargino, the dominant decay is very top-like: n The differences are: n n n Mass distribution of the stop Different “escaping particles” makes topology slightly different. Search in stop pair to dilepton channel. 2009/09/11 日本物理学会 2009年秋季大会 28

Chargino-Neutralino Production in Trilepton Mode n Trilepton channel in Dilepton chargino-neutralino production: “golden mode”

Chargino-Neutralino Production in Trilepton Mode n Trilepton channel in Dilepton chargino-neutralino production: “golden mode” n n 3 leptons + MET: very clean for hadron colliders Include isolated tracks for tau decays 2009/09/11 Trilepton 日本物理学会 2009年秋季大会 29

Chargino-Neutralino Limit in m. SUGRA n For chargino mass n n Expected limit: 156

Chargino-Neutralino Limit in m. SUGRA n For chargino mass n n Expected limit: 156 Ge. V/c 2 Observed limit: 164 Ge. V/c 2 2009/09/11 日本物理学会 2009年秋季大会 30

GMSB Neutralino Search Using Photons n n Gauge-Mediated Supersymmetry Breaking (GMSB) models usually allow

GMSB Neutralino Search Using Photons n n Gauge-Mediated Supersymmetry Breaking (GMSB) models usually allow neutralino to decay in photon and gravitino (LSP). Search for neutralino pair production. n n Signature is: 2 photons and MET. Observed 0 event Expected 1. 2 ± 0. 3 ± 0. 2 Background rejection n n EMTiming (non-collision bkg) MET Resolution Model (QCD) 2009/09/11 日本物理学会 2009年秋季大会 31

Other BSM Searches 4 th Generation b’ in Same-Sign Dilepton Gaugino Pair Production in

Other BSM Searches 4 th Generation b’ in Same-Sign Dilepton Gaugino Pair Production in W+Z+MET R-Parity Violating Sneutrino Dijet+MET WW/WZ Resonance 2009/09/11 日本物理学会 2009年秋季大会 32

Summary n n n Tevatron is operating well. Better than ever! -1 is expected.

Summary n n n Tevatron is operating well. Better than ever! -1 is expected. n CDF is ready to run for FY 2011. Ldt ~ 12 fb Successful application of multivariate analysis techniques. Top quark properties are being measured more and more precisely. Mass precision is now less than 1%. n Top quark properties are consistent with SM so far. n Still improving the Higgs sensitivity. No signs of physics beyond SM, but search continues actively. n Stay tuned for interesting results from Tevatron in the near future! n n New top mass combination and new EW fit New Tevatron combined Higgs limit New search channels and updates on the search results 2009/09/11 日本物理学会 2009年秋季大会 33

Backup Slides 2009/09/11 日本物理学会 2009年秋季大会 34

Backup Slides 2009/09/11 日本物理学会 2009年秋季大会 34

Forward-Backward Asymmetry in ttbar Production n Charge asymmetry in ttbar production Forward-backward asymmetry n

Forward-Backward Asymmetry in ttbar Production n Charge asymmetry in ttbar production Forward-backward asymmetry n n LO QCD predicts 0 asymmetry NLO predicts Afb = (5 1. 5)% (O. Antuñano et al. , Phys. Rev. D 77, 014003(2008)) n n n + Interference between initial and final state radiation Interference between box diagram and Born process + DØ (0. 9 fb-1): Afbrec = 0. 12 0. 08 0. 01 (Reconstruction level, i. e. , no correction) 2009/09/11 日本物理学会 2009年秋季大会 35

Charm Tagging in Stop Search n Charm Hadron Analysis-Oriented Separator (CHAOS) n 2 D-output

Charm Tagging in Stop Search n Charm Hadron Analysis-Oriented Separator (CHAOS) n 2 D-output NN to distinguish flavor of jets: n n b jets, light jets, and c jets 22 input variables: Mvtx Qvtx Lxy/s. Lxy Npassed trk/Ngood trk p. Tgood trk/ETjet p. Tvtx/ETjet p. T 1 st/p. Tvtx p. T 2 nd/p. Tvtx <|d 0|>good trk <|d 0/sd 0|>good trk fjet hjet 2009/09/11 zt= p. Tpassed trk/ p. Tgood trk rvtx=p. Tvtx/ p. Tgood trk frac. of good trk w/ |d 0/sd 0|>1, 3, 5 signed d 0 of 1 st/2 nd trk signed d 0/sd 0 of 1 st/2 nd trk 日本物理学会 2009年秋季大会 36