Testing Composite Higgs Models at the Higgs Factory

  • Slides: 35
Download presentation
Testing Composite Higgs Models at the Higgs Factory Kei Yagyu (Osaka U. ) Collaboration

Testing Composite Higgs Models at the Higgs Factory Kei Yagyu (Osaka U. ) Collaboration with S. De Curtis, L. Delle Rose (Florence U. ) and S. Moretti (Southampton U. ) 1810. 06465 (JHEP), 1803. 01865 (PLB) LCWS 2019, Oct. 30 th, Sendai

What/Where is New Physics? p At least now, we know mh 100 Ge. V

What/Where is New Physics? p At least now, we know mh 100 Ge. V Λ Energy 1019 Ge. V p This picture causes a huge fine-tuning in the Higgs boson mass.

What/Where is New Physics? p At least now, we know SM? mh 100 Ge.

What/Where is New Physics? p At least now, we know SM? mh 100 Ge. V ΛNP Λ Energy 103 -4 Ge. V 1019 Ge. V Scalar (SUSY) : Chiral symmetry Higgs is a Fermion (Composite Higgs) : Chiral symmetry Gauge boson (Gauge-Higgs unification): Gauge symmetry

Pion and Composite Higgs Energy q Λ=4πf q 1 Ge. V QCD(no scalar) G

Pion and Composite Higgs Energy q Λ=4πf q 1 Ge. V QCD(no scalar) G = SU(2)L × SU(2)R ρ Non-pert. effects f π 0. 1 Ge. V H = SU(2)V 9/35 Georgi, Kaplan (1984) Contino, Nomura, Pomarol (2003)

Pion and Composite Higgs Energy × 1000 q Λ=4πf q 1 Ge. V ρ

Pion and Composite Higgs Energy × 1000 q Λ=4πf q 1 Ge. V ρ f π 0. 1 Ge. V QCD(no scalar) 9/35 Georgi, Kaplan (1984) Contino, Nomura, Pomarol (2003)

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) W’,

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) W’, Z’? Non-pert. effects f 0. 1 Ge. V ψ Λ=4πf 1 Te. V ρ π ψ QCD-like Th. G 1 Ge. V Georgi, Kaplan (1984) Energy × 1000 q 9/35 H 0. 1 Te. V h f=v

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) W’,

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) W’, Z’? Non-pert. effects f 0. 1 Ge. V ψ Λ=4πf 1 Te. V ρ π ψ QCD-like Th. G 1 Ge. V Georgi, Kaplan (1984) Energy × 1000 q 9/35 H 0. 1 Te. V h f=v ☹ No discovery, Exc. by EWPT

Pion and Composite Higgs Energy q G W’, Z’? Heavy enough H ψ Λ=4πf

Pion and Composite Higgs Energy q G W’, Z’? Heavy enough H ψ Λ=4πf 10 Te. V ☺ Non-pert. effects 0. 1 Ge. V ψ QCD-like Th. ρ f Contino, Nomura, Pomarol (2003) Energy QCD(no scalar) 1 Ge. V π Georgi, Kaplan (1984) × 10000 q Λ=4πf 9/35 1 Te. V ☹ Too heavy h f=v Incorrect ☹

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) QCD-like

Pion and Composite Higgs Energy Λ=4πf q QCD(no scalar) Contino, Nomura, Pomarol (2003) QCD-like Th. G 1 Ge. V Georgi, Kaplan (1984) Energy × 10000 q 9/35 W’, Z’? Non-pert. effects π 0. 1 Ge. V ψ Λ=4πf 10 Te. V ρ f ψ H f 1 Te. V Vacuum Misalign. 0. 1 Te. V h v

16/35 Basic Rules for the Construction p The structure of the Higgs sector is

16/35 Basic Rules for the Construction p The structure of the Higgs sector is determined by the coset G/H. p H should contain the custodial SO(4) ≃ SU(2)L×SU(2)R symmetry. p The number of NGBs (dim. G-dim. H) must be 4 or lager. p Explicit breaking of G must be introduced. G G [dim] f Mrazek et al, NPB 853 (2011) 1 -48 H [dim] Higgs sector Agashe, Contino, Pomarol (2005) SO(5) [10] SO(4) [6] H SO(6) [15] SO(5) [10] Gsm SO(6) [15] SO(4)×SO(2) [7] SU(5) [24] SU(4)×U(1) [16] Sp(6) [21] Sp(4)×SU(2) [13] SU(5) [24] SO(5) [10] v EM Φ Φ+S Φ + Φ’ Φ+Δ+S etc

Structure of CHMs Elementary Sector Strong Sector Mixing ・Explicit G breaking ・No Higgs ・No

Structure of CHMs Elementary Sector Strong Sector Mixing ・Explicit G breaking ・No Higgs ・No potential & Yukawa Partial Compositeness ・Exact G symmetry ・G/H ∋ Σ (p. NGBs) Only kinetic terms Potential = + + + ・・・

Vacuum misalignment p The Higgs potential is written as Stationary condition (V’ = 0)

Vacuum misalignment p The Higgs potential is written as Stationary condition (V’ = 0)

Vacuum misalignment p The Higgs potential is written as Stationary condition (V’ = 0)

Vacuum misalignment p The Higgs potential is written as Stationary condition (V’ = 0) Higgs Mass (V’’) The light Higgs boson is naturally explained by an O(1) coefficient. α and β can be predicted from strong dynamics.

Higgs boson mass (Minimal CHM) De Curtis, Redi, Tesi, JHEP 04 (2012) 042 f

Higgs boson mass (Minimal CHM) De Curtis, Redi, Tesi, JHEP 04 (2012) 042 f = 800 Ge. V, mρ = 2. 5 Te. V Lightest extra fermion mass [Ge. V]

Structure of CHMs Elementary Sector Strong Sector Mixing ・Explicit G breaking ・No Higgs ・No

Structure of CHMs Elementary Sector Strong Sector Mixing ・Explicit G breaking ・No Higgs ・No potential & Yukawa Only kinetic terms Higgs boson couplings: Partial Compositeness ・Exact G symmetry ・G/H ∋ Φ (p. NGBs)

Higgs boson couplings Kanemura, Kaneta, Machida, Shindou, PRD 91 (2014) 115016 Fingerprinting is possible

Higgs boson couplings Kanemura, Kaneta, Machida, Shindou, PRD 91 (2014) 115016 Fingerprinting is possible among various MCHMs! 15

Pion and Composite Higgs Energy × 10000 q Λ=4πf q 1 Ge. V QCD(no

Pion and Composite Higgs Energy × 10000 q Λ=4πf q 1 Ge. V QCD(no scalar) 9/35 Georgi, Kaplan (1984) Contino, Nomura, Pomarol (2003) Energy QCD-like Th. π ψ Λ=4πf 10 Te. V ρ f ψ W’, Z’? 0. 1 Ge. V f 1 Te. V 0. 1 Te. V h Vacuum Misalignment v ~ f/4π

Pion and Composite Higgs Energy q π Contino, Nomura, Pomarol (2003) Energy QCD(no scalar)

Pion and Composite Higgs Energy q π Contino, Nomura, Pomarol (2003) Energy QCD(no scalar) QCD-like Th. 1 Ge. V ρ f Georgi, Kaplan (1984) × 10000 q Λ=4πf 9/35 SO(6)×SO(2) SU(3)V SO(4)×SO(2) ψ Λ=4πf 10 Te. V SU(3)L×SU(3)R ψ W’, Z’? K, K … 0. 1 Ge. V f 1 Te. V H, A, H± 0. 1 Te. V h Vacuum Misalignment v ~ f/4π

Effective Potential + O(Φ 6) All the potential parameters mi 2 and λi are

Effective Potential + O(Φ 6) All the potential parameters mi 2 and λi are given as a function of strong parameters:

Effective Potential + O(Φ 6) p Fermion loop contributions Hardly-broken Z 2 symmetry Unbroken

Effective Potential + O(Φ 6) p Fermion loop contributions Hardly-broken Z 2 symmetry Unbroken Z 2 symmetry (Inert 2 HDM)

Typical Prediction of Mass Spectrum E Ψ, ρμ f H±, H, A h ~

Typical Prediction of Mass Spectrum E Ψ, ρμ f H±, H, A h ~ 125 Ge. V

Correlation b/w f and m. A De Curtis, Delle Rose, Moretti, KY, ar. Xiv:

Correlation b/w f and m. A De Curtis, Delle Rose, Moretti, KY, ar. Xiv: 1803. 01865 [hep-ph]

Correlation b/w m. A and κV (= gh. VV/gh. VVSM) De Curtis, Delle Rose,

Correlation b/w m. A and κV (= gh. VV/gh. VVSM) De Curtis, Delle Rose, Moretti, KY, ar. Xiv: 1803. 01865 [hep-ph] MSSM: Feyn. Higgs v 2. 14. 1

Correlation b/w κV and κt

Correlation b/w κV and κt

Summary p CHMs (Higgs = p. NGB) can naturally explain the light Higgs boson.

Summary p CHMs (Higgs = p. NGB) can naturally explain the light Higgs boson. p The Higgs potential is predictable from strong dynamics. p Non-minimal Higgs sectors can also be constructed by taking larger cosets. p C 2 HDMs have slower decoupling property (c. f. MSSM). p Correlation b/w κV and κt can be significantly different in the MCHM 5, C 2 HDM and 2 HDM.

Fujii et al, 1710. 07621 [hep-ph] 1%!!

Fujii et al, 1710. 07621 [hep-ph] 1%!!

Setup for C 2 HDM p We introduce SO(6) 6 -plet fermions for the

Setup for C 2 HDM p We introduce SO(6) 6 -plet fermions for the explicit Lagrangian: p Z 2 -like symmetry in the strong sector can be introduced. C 2 symmetry (to avoid FCNCs) C 2 = diag(1, 1, 1, -1) 1. Unbroken case, 2. Spontaneously broken case and 3. Hardly broken case (there is no option for the softly-breaking)

Higgs boson couplings Kanemura, Kaneta, Machida, Shindou, PRD 91 (2014) 115016

Higgs boson couplings Kanemura, Kaneta, Machida, Shindou, PRD 91 (2014) 115016

f VS tanβ 30/35 De Curtis, Delle Rose, Moretti, KY, ar. Xiv: 1803. 01865

f VS tanβ 30/35 De Curtis, Delle Rose, Moretti, KY, ar. Xiv: 1803. 01865 [hep-ph]

Correlation b/w m. A and mass differences

Correlation b/w m. A and mass differences

Masses of heavy top partners 34/35 De Curtis, Delle Rose, Moretti, KY, ar. Xiv:

Masses of heavy top partners 34/35 De Curtis, Delle Rose, Moretti, KY, ar. Xiv: 1803. 01865 [hep-ph] C 2 HDM MSSM

Slide from Csaba Csaki 32

Slide from Csaba Csaki 32

Slide from Csaba Csaki 33

Slide from Csaba Csaki 33

S, T parameter Panico, Wulzer, ar. Xiv: 1506. 01961 p Contribution from heavy resonances

S, T parameter Panico, Wulzer, ar. Xiv: 1506. 01961 p Contribution from heavy resonances y. L = ΔL/f , m : lightest fermion partner mass