Termodinmica La termodinmica es la rama de la

  • Slides: 13
Download presentation
Termodinámica La termodinámica es la rama de la física que estudia la energía, la

Termodinámica La termodinámica es la rama de la física que estudia la energía, la transformación entre sus distintas manifestaciones, como el calor, y su capacidad para producir un trabajo. Un sistema puede ser cualquier objeto, masa, región del espacio, etc. , seleccionado para estudiarlo y aislarlo (mentalmente) de todo lo demás, que pasa a ser el entorno del sistema. El sistema y su entorno forman el universo. La distinción entre sistema y entorno es arbitraria: el sistema es lo que el observador ha escogido para estudiar. La envoltura imaginaria que encierra un sistema y lo separa del entorno se llama frontera del sistema y puede pensarse que tiene propiedades especiales que sirven para: a) aislar el sistema de su entorno o para b) permitir la interacción de un modo específico entre el sistema y su ambiente.

Un sistema aislado es aquel que no puede intercambiar materia ni energía con su

Un sistema aislado es aquel que no puede intercambiar materia ni energía con su entorno. Un sistema cerrado es aquel que sólo puede intercambiar energía con su entorno, pero no materia. Un sistema abierto es aquel que puede intercambiar materia y energía con su entorno. Sistema termodinámico Un sistema termodinámico es un sistema macroscópico cuyas características microscópicas (la posición y la velocidad de las partículas en cada instante) es inaccesible y donde sólo son accesibles sus características estadísticas. El estado de un sistema representa la totalidad de las propiedades macroscópicas asociadas con él. Cualquier sistema que muestre un conjunto de variables identificables tiene un estado termodinámico, ya sea que esté o no en equilibrio.

La termodinámica se ocupa de la energía y sus transformaciones en los sistemas desde

La termodinámica se ocupa de la energía y sus transformaciones en los sistemas desde un punto de vista macroscópico Un sistema puede ser cualquier objeto, cualquier cantidad de materia, cualquier región del espacio, etc. , seleccionado para estudiarlo y aislarlo (mentalmente) de todo lo demás, lo cual se convierte entonces en el entorno del sistema + entorno = universo. La envoltura imaginaria que encierra un sistema y lo separa de sus inmediaciones (entorno) se llama frontera del sistema y puede pensarse que tiene propiedades especiales que sirven para: a) aislar el sistema de su entorno o para b) permitir la interacción de un modo específico entre el sistema y su ambiente.

Llamamos sistema, o medio interior, la porción del espacio limitado por una superficie real

Llamamos sistema, o medio interior, la porción del espacio limitado por una superficie real o ficticia, donde se sitúa la materia estudiada. El resto del universo es el medio exterior.

Si la frontera permite la interacción entre el sistema y su entorno, tal interacción

Si la frontera permite la interacción entre el sistema y su entorno, tal interacción se realiza a través de los canales existentes en la frontera. Los canales pueden ser inespecíficos para interacciones fundamentales como el calor o la interacción mecánica o eléctrica, o muy específicos para interacciones de transporte. Sistemas aislados, cerrados y abiertos Sistema aislado es el sistema que no puede intercambiar materia ni energía con su entorno. Sistema cerrado es el sistema que sólo puede intercambiar energía con su entorno, pero no materia. Sistema abierto es el sistema que puede intercambiar materia y energía con su entorno.

Todo sistema posee una estructura microscópica (moléculas, ellas mismas formadas por átomos, ellos mismos

Todo sistema posee una estructura microscópica (moléculas, ellas mismas formadas por átomos, ellos mismos formados por partículas elementales); de modo que uno puede considerar, a priori, las características microscópicas, propias de cada una de las partículas constitutivas del sistema, y las características macroscópicas correspondientes al comportamiento estadístico de estas partículas. Sistema termodinámico Un sistema termodinámico es un sistema macroscópico, es decir, un sistema cuyo detalle de sus características microscópicas (comprendida la posición y la velocidad de las partículas en cada instante) es inaccesible y donde sólo son accesibles sus características estadísticas.

Estado de un sistema y sus transformaciones la palabra estado representa la totalidad de

Estado de un sistema y sus transformaciones la palabra estado representa la totalidad de las propiedades macroscópicas asociadas con un sistema. . . Cualquier sistema que muestre un conjunto de variables identificables tiene un estado termodinámico, ya sea que esté o no en equilibrio. !!!! Concepto de transformación: estado inicial y estado final, transformación infinitesimal Se dice que ocurre una transformación en un sistema si, como mínimo, cambia de valor una variable de estado dentro del mismo a lo largo del tiempo. Si el estado inicial es distinto del estado final, la transformación es abierta. Si los estados inicial y final son iguales, la transformación es cerrada. Si el estado final es muy próximo al estado inicial, la transformación es infinitesimal. El interés de la termodinámica se centra en los estados inicial y final de las transformaciones, independientemente del camino seguido. Eso es posible gracias a las funciones de estado.

Transformaciones reversibles e irreversibles Una transformación es reversible si se realiza mediante una sucesión

Transformaciones reversibles e irreversibles Una transformación es reversible si se realiza mediante una sucesión de estados de equilibrio del sistema con su entorno y es posible devolver al sistema y su entorno al estado inicial por el mismo camino. Reversibilidad y equilibrio son equivalentes. Si una transformación no cumple estas condiciones se llama irreversible. Equilibrio termodinámico Las propiedades termodinámicas de un sistema vienen dadas por los atributos físicos macroscópicos observables del sistema, mediante la observación directa o mediante algún instrumento de medida. Un sistema está en equilibrio termodinámico cuando no se observa ningún cambio en sus propiedades termodinámicas a lo largo del tiempo. Los estados de equilibrio son, por definición, estados independientes del tiempo.

El estado de equilibrio termodinámico se caracteriza por la anulación por compensación de flujos

El estado de equilibrio termodinámico se caracteriza por la anulación por compensación de flujos de intercambio y la homogeneidad espacial de los parámetros que caracterizan el sistema que ya no dependen del tiempo. Un estado de no equilibrio es un estado con intercambios netos de masa o energía y sus parámetros característicos dependen en general de la posición y del tiempo. Si no dependen del tiempo, necesitan la intervención del entorno para mantener sus valores (estado estacionario fuera del equilibrio).

Reversibilidad Un proceso es reversible si su dirección puede invertirse en cualquier punto mediante

Reversibilidad Un proceso es reversible si su dirección puede invertirse en cualquier punto mediante un cambio pequeño en las condiciones externas. Para los procesos reversibles es posible basar los cálculos en las propiedades del sistema (con independencia de los del entorno). En los procesos reversibles, el sistema nunca se desplaza más que su equilibrio interno o de su equilibrio con su entorno. Noción de deposito Se llama depósito un sistema cuyas variables intensivas no varían ni en el espacio ni en el tiempo, sean cuales sean los intercambios efectuados entre el sistema y el entorno. Así, un depósito es una fase que permanece indefinidamente idéntica a si misma. Ello implica que: 1) para todas las cantidades extensivas susceptibles de ser intercambiadas, puede considerarse que el sistema tiene una capacidad ilimitada. 2) que los intercambios se producen lentamente de forma que no se producen gradientes dentro del sistema de sus variables intensivas. 3) que no se producen reacciones químicas dentro del sistema.

La primera ley de la termodinámica afirma que la energía total de cualquier sistema

La primera ley de la termodinámica afirma que la energía total de cualquier sistema aislado se conserva. También conocida como ley de la conservación de la energía, la Primera ley de la termodinámica establece que si se realiza trabajo sobre un sistema, la energía interna del sistema variará. Se trata de la generalización de la segunda ley de Newton (conservación del movimiento), en este caso llamamos al calor “Q” y la adoptamos como una forma de energía y la energía interna “U” como una propiedad de la materia. El primer reconocimiento del principio de conservación, por Leibniz en 1693, se refería sólo a la suma de la energía cinética (½mv 2) y la energía potencial (mgh) de una masa mecánica simple situada en el campo gravitacional terrestre. A medida que se fueron considerando nuevos tipos de sistemas, la forma establecida del principio de conservación fallaba repetidamente, pero en cada caso, fue posible revivirlo mediante la incorporación de un nuevo término matemático (una 'nueva clase de energía'). . . El principio de la conservación de la energía es uno de los más fundamentales, generales y significantes principios de la teoría física.

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias a las investigaciones de Mayer y de Joule principalmente. Anteriormente, se pensaba que el calor era una sustancia indestructible y sin peso (el calórico) que no tenía nada que ver con la energía.