Terahertz TimeDomain Spectroscopy THzTDS Principles and Applications to

  • Slides: 46
Download presentation
Terahertz Time-Domain Spectroscopy (THz-TDS) Principles and Applications to Solid State Physics Jae Hoon Kim

Terahertz Time-Domain Spectroscopy (THz-TDS) Principles and Applications to Solid State Physics Jae Hoon Kim Optical Spectroscopy Laboratory Department of Physics, Yonsei University POSTECH Colloquium 2017. 09. 13

CONTENTS 1. Optical Spectroscopy 2. Terahertz Time-Domain Spectroscopy 3. Applications to Solid State Physics

CONTENTS 1. Optical Spectroscopy 2. Terahertz Time-Domain Spectroscopy 3. Applications to Solid State Physics

1. Optical Spectroscopy Elecromagnetic waves Wavelength Long wavelength Low energy http: //server 2. phys.

1. Optical Spectroscopy Elecromagnetic waves Wavelength Long wavelength Low energy http: //server 2. phys. uniroma 1. it/gr/irs/index. htm Short wavelength High energy http: //www. ces. fau. edu/nasa/module-2/radiation-sun. php

Elecromagnetic Spectrum http: //ds 9. ssl. berkeley. edu/LWS_gems/2/espec. htm

Elecromagnetic Spectrum http: //ds 9. ssl. berkeley. edu/LWS_gems/2/espec. htm

1. Optical Spectroscopy Transmission / Reflectivity T(ω) and/or R(ω) (Transparent/Opaque) IR E r II

1. Optical Spectroscopy Transmission / Reflectivity T(ω) and/or R(ω) (Transparent/Opaque) IR E r II E i R(ω) = IR / II IT E t T(ω) = IT / II Optical constants Conductivity σ(ω) Dielectric constant ε(ω) Refractive Index N(ω) J(ω) = σ(ω) E(ω) D(ω) = ε(ω) E(ω) q(ω) = (ω/c) N(ω)

Relationship between optical constants Kramers-Kronig relations

Relationship between optical constants Kramers-Kronig relations

Spectrometers 1 THz = 33. 3 cm-1 = 4. 14 me. V 0. 124

Spectrometers 1 THz = 33. 3 cm-1 = 4. 14 me. V 0. 124 me. V 12. 4 me. V 1 cm-1 102 cm-1 0. 03 THz 0. 3 THz 124 me. V 103 cm-1 30 THz 1 e. V 104 cm-1 100 e. V 105 cm-1 106 cm-1 300 THz Cary 5000 0. 4 e. V – 6. 5 e. V 3300 nm – 175 nm Bruker 113 v 10 – 10, 000 cm-1 1 me. V – 1. 25 e. V TPS 3000 2 – 150 cm-1 0. 2 me. V – 19 me. V 0. 05 THz - 5 THz 10 e. V Bruker 120 HR 100 – 20, 000 cm-1 10 me. V – 2. 25 e. V Infrared GES 5 0. 075 e. V – 5. 9 e. V 16500 nm – 200 nm Visible UV/VUV

Fourier Transform Infrared Spectroscopy 1 THz = 33. 3 cm-1 = 4. 14 me.

Fourier Transform Infrared Spectroscopy 1 THz = 33. 3 cm-1 = 4. 14 me. V 0. 124 me. V 12. 4 me. V 1 cm-1 102 cm-1 0. 3 THz 0. 03 THz 103 cm-1 30 THz 1 e. V 104 cm-1 10 e. V 105 cm-1 106 cm-1 300 THz Cary 5 G Fourier Transform 0. 4 e. V – 6. 5 e. V Infrared (FTIR) Spectroscopy 3300 nm – 175 nm Bruker 113 v 10 – 10, 000 cm-1 1 me. V – 1. 25 e. V TPS 3000 2 – 150 cm-1 0. 2 me. V – 19 me. V 0. 05 THz - 5 THz 124 me. V Bruker 120 HR 100 – 20, 000 cm-1 10 me. V – 2. 25 e. V Infrared GES 5 0. 075 e. V – 5. 9 e. V 16500 nm – 200 nm Visible UV/VUV

Terahertz Spectroscopy 1 THz = 33. 3 cm-1 = 4. 14 me. V 0.

Terahertz Spectroscopy 1 THz = 33. 3 cm-1 = 4. 14 me. V 0. 124 me. V 12. 4 me. V 1 cm-1 102 cm-1 0. 3 THz 0. 03 THz 124 me. V 103 cm-1 30 THz 1 e. V 104 cm-1 100 e. V 105 cm-1 106 cm-1 300 THz Cary 5000 0. 4 e. V – 6. 5 e. V 3300 nm – 175 nm Bruker 113 v 10 – 10, 000 cm-1 1 me. V – 1. 25 e. V TPS 3000 2 – 150 cm-1 0. 2 me. V – 19 me. V 0. 05 THz - 5 THz 10 e. V Terahertz (THz) Spectroscopy Bruker 120 HR 100 – 20, 000 cm-1 10 me. V – 2. 25 e. V Infrared GES 5 0. 075 e. V – 5. 9 e. V 16500 nm – 200 nm Visible UV/VUV

Spectroscopy - division of light into separate frequencies light source element spectrum angular seperation

Spectroscopy - division of light into separate frequencies light source element spectrum angular seperation : dispersive spectroscopy (VUV-VIS) spatial interference : Fourier-transform spectroscopy (IR) temporal pulse : time-domain spectroscopy (THz) detector

detector coherent : both intensity and phase incoherent : only intensity source polychromatic :

detector coherent : both intensity and phase incoherent : only intensity source polychromatic : many frequencies (broad band; pulse) monochromatic : one frequency (narrow band; CW) spectrometer source, element, detector polarizer, filter, modulator, analyzer range, resolution, sensitivity spectroscopy light probe of material properties metals, insulators, semiconductors, polymers, …

Interband Transition Interband optical absorption. Keita Yamaguchi Direct Bandgap Indirect Bandgap

Interband Transition Interband optical absorption. Keita Yamaguchi Direct Bandgap Indirect Bandgap

Interband Transition (Direct & Indirect) Si In. As Keita Yamaguchi Direct Bandgap Indirect Bandgap

Interband Transition (Direct & Indirect) Si In. As Keita Yamaguchi Direct Bandgap Indirect Bandgap

Interband Transition (Direct & Indirect) In. As Bandgap Si Bandgap Keita Yamaguchi Direct Bandgap

Interband Transition (Direct & Indirect) In. As Bandgap Si Bandgap Keita Yamaguchi Direct Bandgap Indirect Bandgap

Graphene Universal Transparency 97. 7 % in the visible Exciton Resonance Absorption 4. 6

Graphene Universal Transparency 97. 7 % in the visible Exciton Resonance Absorption 4. 6 e. V

Examples (Al, Au, Cu, In. Sb) Metals (Al, Au) Aluminium Transition Metal (Cu) Doped

Examples (Al, Au, Cu, In. Sb) Metals (Al, Au) Aluminium Transition Metal (Cu) Doped Semiconductor (In. Sb)

Exam. Conductor: Drude Model

Exam. Conductor: Drude Model

Conductor: Drude Model

Conductor: Drude Model

Examples (III-V; Polymer) Semiconductor (In. Sb, Ga. As, Al. Sb) Polycarbonate K-K relation

Examples (III-V; Polymer) Semiconductor (In. Sb, Ga. As, Al. Sb) Polycarbonate K-K relation

Insulator: Lorentz Model

Insulator: Lorentz Model

Insulator: Lorentz Model

Insulator: Lorentz Model

3. THz Time-Domain Spectroscopy Terahertz Wave THz Gap

3. THz Time-Domain Spectroscopy Terahertz Wave THz Gap

Terahertz Technology (Applications) http: //www 2. nict. go. jp/advanced_ict/terahz/thz/jp/research. html

Terahertz Technology (Applications) http: //www 2. nict. go. jp/advanced_ict/terahz/thz/jp/research. html

Security http: //thznetwork. net/index. php/thz-images

Security http: //thznetwork. net/index. php/thz-images

Medical Imaging Quality Assurance Communications http: //thznetwork. net/index. php/thz-images

Medical Imaging Quality Assurance Communications http: //thznetwork. net/index. php/thz-images

Generation and Detection of THz Waves Laser-Gated Photoconductive Antenna THz emitter Sample THz receiver

Generation and Detection of THz Waves Laser-Gated Photoconductive Antenna THz emitter Sample THz receiver I meter

Operation Schematic TPS 3000 computer Spectrum amplitude Temporal Waveform Fast-Fourier Transform Spectrum phase

Operation Schematic TPS 3000 computer Spectrum amplitude Temporal Waveform Fast-Fourier Transform Spectrum phase

Single Layer Transmission Ei(ω) L 2 n. L/c pth echo (2 p times reflection)

Single Layer Transmission Ei(ω) L 2 n. L/c pth echo (2 p times reflection)

Relation between T and n, k Ei(ω) Primary Pulse (p=0) L 2 n. L/c

Relation between T and n, k Ei(ω) Primary Pulse (p=0) L 2 n. L/c

Approximation n, k Ei(ω) L 2 L/v Primary Pulse (n>>k Approx. )

Approximation n, k Ei(ω) L 2 L/v Primary Pulse (n>>k Approx. )

p-Si : Time pulse Spectrum Thickness : 1004 μm p-type ; Dopant : B

p-Si : Time pulse Spectrum Thickness : 1004 μm p-type ; Dopant : B Orientation : (100) Resistivity : 8 ~ 12 Ohm cm Fast Fourier Transform

p-Si : Transmission Refractive Index n >> k Approximation Full Correction

p-Si : Transmission Refractive Index n >> k Approximation Full Correction

Thin Film Analysis (Tinkham Formula) d Thin Film Formula Robert A. Kaindl et al.

Thin Film Analysis (Tinkham Formula) d Thin Film Formula Robert A. Kaindl et al. , PRL 88, 027003 (2002)

3. Applications to Solid State Physics : Graphene Universal conductance

3. Applications to Solid State Physics : Graphene Universal conductance

Bi 2 Se 3 MBE Films : Terahertz Time-Domain Signal Magnified peaks • Time-domain

Bi 2 Se 3 MBE Films : Terahertz Time-Domain Signal Magnified peaks • Time-domain pulses transmitted through vacuum & Bi 2 Se 3 thin films (2 -8 QL) • The sample pulses are magnified • A systematic time delay & peak reduction relative to the reference: the changes in the film thickness & the absorption

Complex THz Conductance of Bi 2 Se 3 MBE Films • Terahertz complex conductance

Complex THz Conductance of Bi 2 Se 3 MBE Films • Terahertz complex conductance spectra of a series of Bi 2 Se 3 thin films (2 -8 QL)

Comparison with Theory and ARPES (Bi 2 Se 3 Films) Gapped, but topological Liu,

Comparison with Theory and ARPES (Bi 2 Se 3 Films) Gapped, but topological Liu, C. X. et al. Phys. Rev. B 81, 041307 (2010). Bi 2 Se 3 on DLG Trivial Nature Phys. 6, 584– 588 (2010) + + − − − ordinary insulator QSH insulator (If EF is in the gap) Tight Binding (TB) model constructed by maximally localized Wannier function (MLWF) from first-principles calculation

d. c. Limit Conductance of Bi 2 Se 3 MBE Films • 2 QL

d. c. Limit Conductance of Bi 2 Se 3 MBE Films • 2 QL “zero” d. c. limit conductance clear RHEED confirms the proper formation • 3 QL quantum spin Hall phase d. c. limit conductance of 2 G 0 a pair of Dirac hyperbolas 2 D: quantized, plateau 3 D: continuous, linear • 4 QL 2 G 0: a single QWS from both surfaces • 5 QL 6 G 0: 3 QWSs from both surfaces • Above 6 QL additional G from bulk free-carrier states • • • The d. c. limits of the real conductance G 1 in units of the conductance quantum e 2/h The band schematic corresponding to the evolving phase of Bi 2 Se 3 ultrathin films The sequential contributions by the TSSs, QWSs, and bulk free-carrier states 8 G 0

Demonstration of Spin Precession Ø Zeeman Torque Magnetic moment Gyromagnetic ratio Bohr magneton g-factor

Demonstration of Spin Precession Ø Zeeman Torque Magnetic moment Gyromagnetic ratio Bohr magneton g-factor (electron) Ø Landau – Lifshitz (LL) Equation Dissipation of energy of magnetization oscillation Gurevich, Alexander G. , and Gennadii A. Melkov. Magnetization oscillations and waves. CRC press, 1996.

Spin Precession in Pristine YFe. O 3 Spin configuration of YFe. O 3 Antiferromagnetic

Spin Precession in Pristine YFe. O 3 Spin configuration of YFe. O 3 Antiferromagnetic resonance modes

Terahertz time signal of YFe. O 3

Terahertz time signal of YFe. O 3

BCS superconductor (Nb. Ti. N) Nb. Ti. N (Tc=14. 1 K; d=280 nm) Meissner

BCS superconductor (Nb. Ti. N) Nb. Ti. N (Tc=14. 1 K; d=280 nm) Meissner Effect http: //www. sciencedaily. com/releases/2004/08/040824014758. htm Weak-coupling BCS superconductor

Metamaterials LC resonance YBCO on sapphire sub. [Microscopic image] Quadrupole resonance

Metamaterials LC resonance YBCO on sapphire sub. [Microscopic image] Quadrupole resonance

Nb. N Superconducting Metamaterial

Nb. N Superconducting Metamaterial

Summary v Solid State Optics - Interaction between solids and electromagnetic waves - Deep

Summary v Solid State Optics - Interaction between solids and electromagnetic waves - Deep insights into electron & phonon systems v THz Spectroscopy - THz-TDS as a new spectroscopic tool - Time domain pulse spectroscopy technique - Conductivity spectra without KK analysis - Complementary to Transport, IR, Ellipsometry - Ideal for Low-Density Correlated System - Superconductor, 2 D Materials, Topological Insulator, Metamaterial, Magnetic Materials 3 D Imaging, Medical Application, Conservation Science, Explosive Detection

Reference Theory Electrodynamics of Solids - Martin Dressel FTIR FOURIER TRANSFORM INFRARED SPECTROMETRY -

Reference Theory Electrodynamics of Solids - Martin Dressel FTIR FOURIER TRANSFORM INFRARED SPECTROMETRY - Peter R. Griffiths Terahertz Introduction to THz Wave Photonics - X. –C Zhang