Terahertz Response of Monolayer Graphene Velocity Gauge Vs

  • Slides: 23
Download presentation
Terahertz Response of Monolayer Graphene: Velocity Gauge Vs Length Gauge P. Navaeipour, M. M.

Terahertz Response of Monolayer Graphene: Velocity Gauge Vs Length Gauge P. Navaeipour, M. M. Dignam Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston ON K 7 L 3 N 6, Canada

Basics of Graphene . . . w w S. A. Mikhailov, Europhysics Lett. 79,

Basics of Graphene . . . w w S. A. Mikhailov, Europhysics Lett. 79, 27002 (2007) 2 3 w 5 w

Motivation & Outline Ø Find the best method to model the nonlinear response of

Motivation & Outline Ø Find the best method to model the nonlinear response of Graphene Ø Velocity Gauge: F. H. M. Faisal, ar. Xiv, 1, 0810. 07881 (2008) A. R. Wright, Appl. Phys. 44, 083001 (2011) Ø Length Gauge: C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995) K. S. Virk and J. E. Sipe, Phys. Rev. B 76, 035213 (2007) Ø Response of Graphene to THz field by employing these two gauges 3

Velocity & Length Gauges • A. Chacona, J Computational Physics. 1 , 1508 (2015)

Velocity & Length Gauges • A. Chacona, J Computational Physics. 1 , 1508 (2015) 4

Gauge Choice Velocity vs. Length Ø Quantum mechanics is gauge invariant and both gauges

Gauge Choice Velocity vs. Length Ø Quantum mechanics is gauge invariant and both gauges should give, in principle, identical results Ø Convergence of dynamic equations using the velocity gauge requires a large number of bands Ø Divergences at zero frequency arise using the velocity gauge in the nonlinear response Ø The divergence can be removed by developing sum rules, which become extremely complicated at high-order in the field C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995) K. S. Virk and J. E. Sipe, Phys. Rev. B 76, 035213 (2007) 5

Populations Dynamic Equations Length Gauge: Interband Velocity Gauge: I. Al-Naib et al. , Phys.

Populations Dynamic Equations Length Gauge: Interband Velocity Gauge: I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 6 Interband Intraband

Coherences Dynamic Equations Length Gauge: Velocity Gauge: I. Al-Naib et al. , Phys. Rev.

Coherences Dynamic Equations Length Gauge: Velocity Gauge: I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 7 Interband Intraband

Current Density in Length Gauge Interband Current: Intraband Current: I. Al-Naib et al. ,

Current Density in Length Gauge Interband Current: Intraband Current: I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 8 Interband Intraband

Current Density in Velocity Gauge Interband Current: Intraband Current: 9

Current Density in Velocity Gauge Interband Current: Intraband Current: 9

Current Density Effective Mass Sum Rule: Total Current Density: J. Callaway, Academic Press, Second

Current Density Effective Mass Sum Rule: Total Current Density: J. Callaway, Academic Press, Second edition, (1974) 10

First order Intraband Conductivity • I. Al-Naib et al. , Phys. Rev. B 90,

First order Intraband Conductivity • I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 11

First Order Interband Conductivity • 12

First Order Interband Conductivity • 12

Summary Ø If one uses the mass sum rule and neglects scattering, two gauges

Summary Ø If one uses the mass sum rule and neglects scattering, two gauges yield identical linear conductivities. Ø If we consider scattering term, even the linear interband conductivity is quite different in two gauges. Ø One should do calculations in the interaction picture when employing velocity gauge. Ø Nonlinear response can be quite different for the two approaches, due to the diverges arise at zero frequency in the velocity gauge when one uses a basis with a finite number of bands. Ø One should use the length gauge for graphene when calculating the nonlinear THz response. 13

Thank You! 14

Thank You! 14

Current • 15

Current • 15

Mass Sum Rule • 16

Mass Sum Rule • 16

Linear Response • 17

Linear Response • 17

Outline Ø Motivation Ø Velocity gauge and Length Gauge Ø Comparing response of Graphene

Outline Ø Motivation Ø Velocity gauge and Length Gauge Ø Comparing response of Graphene in Velocity gauge and Length gauge Ø Conclusion 19

System Under Study Ø Graphene on a substrate Incident field Ø Fermi level at

System Under Study Ø Graphene on a substrate Incident field Ø Fermi level at the Dirac point Ø Temperature of 30 K Ø Scattering time of 50 fs 20 Transmitted field

Introduction: THz Band Moloney et al. , DOI: 10. 1117/2. 1201102. 003523 Ø Numerous

Introduction: THz Band Moloney et al. , DOI: 10. 1117/2. 1201102. 003523 Ø Numerous organic molecules exhibit strong absorption and dispersion due to rotational and vibrational transitions 21

Introduction: Graphene P. R. Wallace, Physical Review 71, 622 (1947) K. S. Novoselov et

Introduction: Graphene P. R. Wallace, Physical Review 71, 622 (1947) K. S. Novoselov et al. , Science 306, 666 (2004) Publication trend Patents trend V. Dhand et al. , J. of Nanomaterials 763953 (2013) 22 Technology Insight Report: Graphene (2013)

 • I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 23

• I. Al-Naib et al. , Phys. Rev. B 90, 245423, 2014 23