Technologies de prtraitement JeanLuc Wertz and Prof Michel

  • Slides: 38
Download presentation
Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012

Technologies de prétraitement Jean-Luc Wertz and Prof. Michel Paquot VALEBIO 23 mars 2012

PLAN 1 Transformation de la biomasse en énergie et produits 1. 1 La bioraffinerie

PLAN 1 Transformation de la biomasse en énergie et produits 1. 1 La bioraffinerie 1. 2 Voie biochimique 1. 3 Voie thermochimique 2 Prétraitements 2. 1 Prétraitements physiques 2. 2 Prétraitements chimiques (p. ex. organosolv) 2. 3 Prétraitements physico-chimiques (p. ex. steam explosion) 2. 4 Prétraitements biologiques 2. 5 Résumé

Définition Bioraffinage Le bioraffinage est le processus durable de transformation de la biomasse en:

Définition Bioraffinage Le bioraffinage est le processus durable de transformation de la biomasse en: 1. bioénergie (biocarburants, électricité, chaleur) 2. produits biobasés (alimentation, produits chimiques, matériaux)

Raffineries de 1ère et 2ème génération • Première génération: raffinage à partir de biomasse

Raffineries de 1ère et 2ème génération • Première génération: raffinage à partir de biomasse alimentaire (canne à sucre, , grains de maïs, huile végétale…) • Deuxième génération: raffinage à partir de biomasse non alimentaire (résidus agricoles et forestiers, déchets municipaux…)

Crude oil refining Crude oil Fuels (Energy) Building blocks (Petrochemistry) Specialties (e. g. lubricants)

Crude oil refining Crude oil Fuels (Energy) Building blocks (Petrochemistry) Specialties (e. g. lubricants)

Biomass refining Biomass Biofuels (Bioenergy) Building blocks (Agro-bio chemistry) Specialties (e. g. biolubricants)

Biomass refining Biomass Biofuels (Bioenergy) Building blocks (Agro-bio chemistry) Specialties (e. g. biolubricants)

Procédés de transformation • Plateforme biochimique - Hydrolyse acide (dilué ou concentré) - Hydrolyse

Procédés de transformation • Plateforme biochimique - Hydrolyse acide (dilué ou concentré) - Hydrolyse enzymatique • Plateforme thermochimique - Combustion - Gazéification - Pyrolyse & traitement hydrothermique

Dilute acid hydrolysis

Dilute acid hydrolysis

Concentrated acid hydrolysis

Concentrated acid hydrolysis

Enzymatic hydrolysis

Enzymatic hydrolysis

Plateforme biochimique Défis - Prétraitement de la biomasse - Coût et efficacité des enzymes

Plateforme biochimique Défis - Prétraitement de la biomasse - Coût et efficacité des enzymes - Fermentation des sucres C 5 and C 6 - Valorisation de la lignine

Thermochemical conversion: primary routes

Thermochemical conversion: primary routes

Gazéification + Fischer-Tropsch Conversion de la biomasse en gaz de synthèse ou syngas (H

Gazéification + Fischer-Tropsch Conversion de la biomasse en gaz de synthèse ou syngas (H 2 + CO) suivie de la conversion du syngas par synthèse Fischer-Tropsch en carburants liquides (Bt. L) Synthèse Fischer-Tropsch

Pyrolyse + conversion catalytique Conversion de la biomasse en bio-huiles, euxmêmes convertis en carburants

Pyrolyse + conversion catalytique Conversion de la biomasse en bio-huiles, euxmêmes convertis en carburants liquides

Schematic of the role of pretreatment Source: P. Kumar et al. , 2009

Schematic of the role of pretreatment Source: P. Kumar et al. , 2009

Liquid hot water (LHW) Pretreatment with liquid water at high temperature and pressure Source:

Liquid hot water (LHW) Pretreatment with liquid water at high temperature and pressure Source: N. Mosier et al. , 2005

Liquid hot water Performance: Strong removal of hemicelluloses but formation of inhibitor Inbicon’s hydrothermal

Liquid hot water Performance: Strong removal of hemicelluloses but formation of inhibitor Inbicon’s hydrothermal pretreatment pilot plant Source: Inbicon

Weak and strong acid hydrolysis 1 Weak acid: -High-temperature (>160°C), continuous-flow process for low

Weak and strong acid hydrolysis 1 Weak acid: -High-temperature (>160°C), continuous-flow process for low solids loadings -Low-temperature (<160°C) batch process for high solids loadings Performance: Strong removal of hemicelluloses but formation of inhibitors 2. Strong acid: Powerful agents for cellulose hydrolysis (no enzymes are needed after the strong acid process) Performance: High monomeric sugar yield but toxic and corrosive

Alkaline hydrolysis Well known in the pulp and paper industry as kraft pulping (or

Alkaline hydrolysis Well known in the pulp and paper industry as kraft pulping (or sulfate process) where wood chips are treated with a mixture of Na. OH and Na 2 S Performance: Weak removal of hemicelluloses, strong removal of lignin

Extraction of lignin from Kraft pulp mill black liquor by the Ligno. Boost process

Extraction of lignin from Kraft pulp mill black liquor by the Ligno. Boost process § Precipitation of lignin from black liquor by lowering the p. H with CO 2 § Dewatering by filtration § Redispersion of lignin § Dewatering by filtration of the new slurry § Washing to produce lignin cakes Source: Metso, Ligno. Boost

Organosolv processes Solvolytic cleavage of an alpha-aryl ether linkage by nucleophilic substitution; R=H or

Organosolv processes Solvolytic cleavage of an alpha-aryl ether linkage by nucleophilic substitution; R=H or CH 3; B=OH, OCH 3 Performance: Weak removal of hemicelluloses, strong removal of lignin

Some important organosolv processes Process Name Solvent / Additive Asam Water + sodium carbonate

Some important organosolv processes Process Name Solvent / Additive Asam Water + sodium carbonate + hydroxide + sulfide + methanol / Anthraquinone Organocell Water + sodium hydroxide + methanol Alcell (APR) Water+ low aliphatic alcohol (e. g. ethanol) Milox Water + formic acid + hydrogen peroxide (forming peroxyformic acid) Acetosolv Water + acetic acid/Hydrochloric acid Acetocell Water + acetic acid Formacell Water + acetic acid + formic acid Formosolv Water + formic acid + hydrochloric acid

Lignol’s process based on water/ethanol pre-treatment Source: Lignol

Lignol’s process based on water/ethanol pre-treatment Source: Lignol

Oxidative delignification 1. Hydrogen peroxide treatment 2. Ozone treatment 3. Wet oxidation: treatment with

Oxidative delignification 1. Hydrogen peroxide treatment 2. Ozone treatment 3. Wet oxidation: treatment with oxygen or air in combination with water at high temperature and pressure Performance: Decrystalisation of cellulose, weak removal of hemicelluloses, strong removal of lignin

Room temperature ionic liquids Main cations and anions in ionic liquids Performance: Partial to

Room temperature ionic liquids Main cations and anions in ionic liquids Performance: Partial to complete dissolution of biomass with easy recovery of cellulose upon anti-solvent addition

Room temperature ionic liquids Different types of interaction present in imidazolinium-based ionic liquids Source:

Room temperature ionic liquids Different types of interaction present in imidazolinium-based ionic liquids Source: H. Olivier-Bourbigou, 2010

Room temperature ionic liquids Proposed mechanism for cellulose dissolution in Emim. Ac (1 -ethyl

Room temperature ionic liquids Proposed mechanism for cellulose dissolution in Emim. Ac (1 -ethyl 3 -methyl imidazolium acetate) Source: J. ZHANG et al. , 2010

Room temperature ionic liquids Hydrolysis of cellulose in a mixture of cellulases and tris-(2

Room temperature ionic liquids Hydrolysis of cellulose in a mixture of cellulases and tris-(2 -hydroxyethyl) methyl ammonium methylsufate (HEMA) + Source: S. Bose et al. , 2010

Steam explosion Schematic of the steam explosion process. 1, sample charging valve; 2, steam

Steam explosion Schematic of the steam explosion process. 1, sample charging valve; 2, steam supply valve; 3, discharge valve; 4, condensate drain valve Principle: Treatment of biomass with highpressure saturated steam, followed by a rapid reduction of steam pressure to obtain an explosive decompression Performance: Strong removal of hemicelluloses but formation of inhibitors Source: T. Jheo, 1998

Ammonia pre-treatments 1. Ammonia fiber explosion (AFEX™): biomass is exposed to liquid ammonia at

Ammonia pre-treatments 1. Ammonia fiber explosion (AFEX™): biomass is exposed to liquid ammonia at high temperature and pressure and then pressure is reduced 2. Ammonia recycle percolation (ARP): aqueous ammonia passes through biomass at high temperature, after which ammonia is recovered Performance: Strong decrystallisation of cellulose, weak removal of hemicelluloses

What is AFEX™? Recovered Ammonia Recovery Ammonia vapor Heat Biomass Reactor Expansion Explosion Treated

What is AFEX™? Recovered Ammonia Recovery Ammonia vapor Heat Biomass Reactor Expansion Explosion Treated Biomass Ammonia Fiber Expansion Process – Moist biomass is contacted with ammonia – Temperature and pressure are increased – Contents soak for specified time at temperature and ammonia load – Pressure is released Source: MBI – Ammonia is recovered and reused AFEX™ is a trademark of MBI

Biomass Conversion for Different Feedstocks Before and After AFEX Glucan conversion for various AFEX

Biomass Conversion for Different Feedstocks Before and After AFEX Glucan conversion for various AFEX treated Feed stocks Switchgrass Corn stover Sugarcane Bagasse Rice straw Miscanthus DDGS Glucan conversion after enzymatic hydrolysis UT=No Pretreatment AFEX=Ammonia Pretreatment Excellent Biomass Conversion After AFEX Pretreatment Source: MBI

Carbon dioxide explosion High pressure carbon dioxide, and particularly supercritical carbon dioxide is injected

Carbon dioxide explosion High pressure carbon dioxide, and particularly supercritical carbon dioxide is injected into the reactor and then liberated by an explosive decompression Performance: Strong decrystalisation of cellulose, strong removal of hemicelluloses

Mechanical/alkaline pre-treatment Continuous mechanical pre-treatment with the aid of an alkali Performance: Weak removal

Mechanical/alkaline pre-treatment Continuous mechanical pre-treatment with the aid of an alkali Performance: Weak removal of hemicelluloses, strong removal of lignin

Biological pre-treatments White-rot fungi are the most efficient in causing lignin degradation Source: L.

Biological pre-treatments White-rot fungi are the most efficient in causing lignin degradation Source: L. Goodeve, 2003 Performance: strong removal of hemicelluloses and lignin Source: R. A. Blanchette, 2006

Performance summary Pretreatment Decrystallization of cellulose Removal of hemicelluloses Removal of lignin Inhibitor formation

Performance summary Pretreatment Decrystallization of cellulose Removal of hemicelluloses Removal of lignin Inhibitor formation Liquid hot water 1) XX XX Weak acid 1) XX XX Alkaline X XX Organosolv X XX Wet oxidation XX Steam explosion* 1) XX Ammonia fiber explosion (AFEX) XX X CO 2 explosion XX XX XX Mechanical/alkaline X XX Biological XX XX XX: Major effect; X: Minor effect; ; *: increases crystallinity; 1) alters lignin structure Inhibitors: furfural from hemicelluloses and hydroxymethylfurfural from cellulose and hemicelluloses

Performance summary 1. All pretreatments partially or totally remove hemicelluloses 2. Wet oxidation, AFEX

Performance summary 1. All pretreatments partially or totally remove hemicelluloses 2. Wet oxidation, AFEX and CO 2 explosion reduce cellulose crystallinity 3. Alkaline, organosolv, wet oxidation, mechanical/alkaline and biological partially or totally remove lignin 4. High amounts of fermentation inhibitors are formed with liquid hot water, weak acid and steam explosion

Thank you for your attention

Thank you for your attention