TAIGA experimnent Ultrahigh energy gammaray astronomy at Tunka

  • Slides: 66
Download presentation
TAIGA experimnent: Ultra-high energy gamma-ray astronomy at Tunka Valley Leonid Kuzmichev Skobeltsyn Institute of

TAIGA experimnent: Ultra-high energy gamma-ray astronomy at Tunka Valley Leonid Kuzmichev Skobeltsyn Institute of Nuclear Physics MSU July 2015, B. Koty Gamma-radiation > 0. 1 Me. V High energy gamma-ray astronomy > 1 Ge. V Very high energy gamma-ray astronomy (VHE)> 100 Ge. V Ultra high ebergy gamma-ray astronomy (UHE) > 10 Тe. V

2 lectures 1. High-energy gamma-ray astronomy - introduction 2. Gamma-ray observatory TAIGA «Physics» of

2 lectures 1. High-energy gamma-ray astronomy - introduction 2. Gamma-ray observatory TAIGA «Physics» of gammaа-ray astronomy 1. Origin of Cosmic rays 2. Intrinsic structure of astrophysical objects 2 Gamma-astronomy and cosmology 3. Dark matter

Lecture 1: High energy gamma-ray astronomy

Lecture 1: High energy gamma-ray astronomy

Plan 1. Introductions – aims of gamma-rays astronomy 2. Gamma-rays generation Synchrotron radiation Inverse

Plan 1. Introductions – aims of gamma-rays astronomy 2. Gamma-rays generation Synchrotron radiation Inverse Compton scattering Pi-0 decay 3. Absorption of gamma-rays 4. Gamma-rays and Super Nova Remnants (SNR) 5. Status of arrays and projects

How we study Universe OK 1 Te. V = 1012 e. V 1 Pe.

How we study Universe OK 1 Te. V = 1012 e. V 1 Pe. V = 1015 e. V 1 Ee. V = 1018 e. V 1 Ze. V = 1021 e. V

Gamma-ray astronomy very successful part of astrophysics 150 Te. V sources 2000 Ge. V

Gamma-ray astronomy very successful part of astrophysics 150 Te. V sources 2000 Ge. V sources Instruments operation: 1. VERITAS 2. HESS 3. MAGIC 4. Fermi-Lat 5. Argo-Yb. J 6. Tibet-III 7. HAWC Projects: 1. CTA - 2017 -18 ? 2. LHAASO - 2017 -2018( ? ) 3. TAIGA

Te. V Pe. V hi

Te. V Pe. V hi

More than 100 local sources of gamma rays with energy >100 Ge. V

More than 100 local sources of gamma rays with energy >100 Ge. V

For this energy range (> 30 Te. V) (1 -10 )km 2 area arrays

For this energy range (> 30 Te. V) (1 -10 )km 2 area arrays are needed

Galactic gamma-rays sources

Galactic gamma-rays sources

2. Gamma-rays generation 1. Synchrotron radiation 2. Inverse Compton scattering 3. Pi-0 decay

2. Gamma-rays generation 1. Synchrotron radiation 2. Inverse Compton scattering 3. Pi-0 decay

Synchrotron radiation ν Larmor = 2. 8 106 ( B/ 1 G) Гц νсинх.

Synchrotron radiation ν Larmor = 2. 8 106 ( B/ 1 G) Гц νсинх. = 3/2 ν Larmor ( E / m c 2 )3 - X-rays Intensity ~ B 2 flux of electrons

Inverse Compton –effect on relict photons Cross sections: σ = σthom. σтhom= 0. 66

Inverse Compton –effect on relict photons Cross sections: σ = σthom. σтhom= 0. 66 10 -25 cm 2 ( S < (mc 2)2 ) σ = σthom (mc 2)2 / s ( S > (mc 2)2 εγ ~10 -4 -10 -3 э. В Eγ ~ εγ х ( E / mc 2 )2 100 Тe. V electron 20 Тe. V photons

Relation between fluxes and energy Photon from Inverse Compton -effect E γ = 2

Relation between fluxes and energy Photon from Inverse Compton -effect E γ = 2 ( εx / 0. 1 ke. V) (B/10 µG)-1 Synchrotron radiation 1 erg ~ 1 Te. V Flux of energy: f (E) = E 2 d. N/d. E ( erg/cm 2 sec) (f (Eγ)) inverse Compton f(εx) synchrotron = 0. 1 (B/10 µG)-2

Gamma-rays from pi- decay P + P π0 + All 2 γ E γ

Gamma-rays from pi- decay P + P π0 + All 2 γ E γ ~ 0. 1 E p Energy spectrum of protons : A E –γ Energy spectrum of gamma-rays : В E- γ why?

Synchroyton radiation Inverse Compton d. Ne / d. E ~ E –α d. Nγ

Synchroyton radiation Inverse Compton d. Ne / d. E ~ E –α d. Nγ /d. E ~ E-(α+1)/2

Gamma ray from protons d. N/d. E ~ E-p - pi-0 - gamma-rays d.

Gamma ray from protons d. N/d. E ~ E-p - pi-0 - gamma-rays d. N/d. E ~ E -p From electrons d. N/d. E ~ E-p - gamma-rays d. N/d. E ~ E –(p+1). 2

Absorption of gamma-rays γ + photon → e+ + e- λ (Mpc) University Galaxy

Absorption of gamma-rays γ + photon → e+ + e- λ (Mpc) University Galaxy Exp ( - l / λ) proton 1 Пэв 8 kpc 40 kpc

Distance from the nearest galaxies LMC - 160 kpc SNR 1987 Androdema 2 Mpc

Distance from the nearest galaxies LMC - 160 kpc SNR 1987 Androdema 2 Mpc M 82 ( startburst galaxy) 4 Mpc Markarian 421 120 Mpc ( the nearest Blazar)

3. Gamma-astronomy and supernova remnants

3. Gamma-astronomy and supernova remnants

SNRs – main sourses of Galactic Cosmic rays 1. 1933 – Baade and Zwicky–

SNRs – main sourses of Galactic Cosmic rays 1. 1933 – Baade and Zwicky– Explosion of SN – source of CR 2. 1949 – Fermi – first theory of cosmic rays acceleration Cas A 3. 1963 – Ginzburg, Sirovatsky – transfer of 10% of kinetic energy of SNR КЛ is enough to explain intensity of CR radio polarization in red (VLA), X-rays in green (CHANDRA), optical in blue (HST) SN explosion – 1053 erg Kinetic energy of - 1051 erg Rate- 1 per 30 y 4. 1977 – 1978 -Krymsky, Bell at all – theory of acceleration on shock waves 5. 1993 -1996 – Berezhko et al. – nonlineraly theory acceleration. 6. 2003 -2005 – Bell, Berezhko & Volk, Ptuskin & Zirakoshvily – amplification of magnetic field on the front of shock waves – Emax ~ Z · 1015 e. V

Observations nonthermal X-rays radio emission νMHz = 4. 6 BμG (Ee, Ge. V )2

Observations nonthermal X-rays radio emission νMHz = 4. 6 BμG (Ee, Ge. V )2 E = 50 Me. V – 30 Ge. V (100 Ge. V for IR) γ = 1. 9 – 2. 5 We = 1048 – 1049 erg Ginzburg & Syrovatskii 1964 Shklovsky 1976 synchrotron γ e SNR π0 γ εke. V = 1 BμG(Ee/120 Te. V)2 εmax ~ 100 Te. V p e Compton γ inverse ε = ε (E /m c 2)2 γ 0 e e Te. V γ – rays electrons/protons εmax ~ 100 Te. V

Cosmic Ray diffusive acceleration in Supernova Remnants ESN ~ 1051 erg Krymsky 1977 Bell

Cosmic Ray diffusive acceleration in Supernova Remnants ESN ~ 1051 erg Krymsky 1977 Bell 1978 - is the shockcompression ratio =hock ratio for strong shock Frequent scatterings of CRs on magnetic field irregularities in collisionless medium provide efficient acceleration of CRs at strong shock

Maximum Energy Emax = U x R x B - Hillas rule Amplification of

Maximum Energy Emax = U x R x B - Hillas rule Amplification of magnetic field By stream instability

Magnetic field amplification –steaming instability ρISM Beff Results of modeling (Lucek & Bell, 2000)

Magnetic field amplification –steaming instability ρISM Beff Results of modeling (Lucek & Bell, 2000) & theoretical considerations (Bell 2004; Pelletier et al. 2006; Zirakashvili et al. 2007)+ VS BISM Spectral properties of SNR synchrotron emission + Fine structure of nonthermal X-ray emission CR flux shock SNR magnetic field is considerably amplified L 2 -2 Beff /8π ≈ 10 ρISMVS Beff >> BISM 2 B ~ 200 n 1/2 ( U/ 104 km/s ) 3/2 µG Emax ~ 200 n 1/2 ( U/ 104 km/s ) 2 Rpc Te. V

Filamentary structure of X-ray emission of young SNRs -consequence of strongly amplified magnetic field,

Filamentary structure of X-ray emission of young SNRs -consequence of strongly amplified magnetic field, leading to strong synchrotron losses Chandra Cassiopeia A Chandra SN 1006

Dependence of Emax from time Emax ~ U R B ~ U 2 R

Dependence of Emax from time Emax ~ U R B ~ U 2 R R = R 0 ( t/t 0) 2/5 Sedov solution t 0 – beginning of Sedov phase t 0 ~ n -1/3 M 5/6 E 1/2 - 100 -1000 years Emax ~ t -4/5

 «Cooling» of electrons T 1/2 - time of transfer energy from eletrons to

«Cooling» of electrons T 1/2 - time of transfer energy from eletrons to gamma-rays d. E/dt = b E 2 W CMB = 0. 25 e. V/cm 3 b = 4/3 (σT c )/ (mc 2 )2 ( W CMB + B 2/ 8π ) E (t ) = Eo/ ( 1 +bt E 0) Hight-energy gamma-rays σT h = 6. 6 10 -25 cm 2 Sychrotron radiation T 1/2 = 1/b. E 0 For E 0 =20 Te. V T = 5 10 4 y W CMB / W B = 0. 1 (B/10 µG )-2

 «Cooling» of protons : Ƭpp = 1/ ( ngas · c · k

«Cooling» of protons : Ƭpp = 1/ ( ngas · c · k - inelasticity σpp) = 6 x 107 ( n gas / 1 cm-3)-1 год,

Relation between fluxes of-gammarays Fγ ( IC) = W e / T F γ

Relation between fluxes of-gammarays Fγ ( IC) = W e / T F γ (π ) = Wp /Ƭ Fγ ( IC) / F γ (π ) = 10 3 ( We/ Wp) (n/1 cm-3)-1 for Eγ =1 Te. V

Derivation of DAV formula : Ƭpp = 1/ ( ngas · c · k

Derivation of DAV formula : Ƭpp = 1/ ( ngas · c · k - inelasticity σpp) = 6 x 107 ( n gas / 1 cm-3) год, P (E) = I x E-2 total energy = integral from 1 Ge. V to 1 Pe. V I x ln( 10^6) = 1050 erg I = 7 x 10^48 erg c (P -γ) = 0. 1 - part of proton energy transfered to gamma-ray Fγ (Eγ ) E ^2 = I x c (P -γ) / (Ƭpp ( 4π d^2) ) = 10^(-11) ( Wcr/ 10^50 erg) ( ( d/ 1 kpc)^-2 erg / cm 2 s n gas / 1 cm-3 )

SNR detected at Te. V energies Name RX J 1713. 7 Dist(kpc) 1 Size,

SNR detected at Te. V energies Name RX J 1713. 7 Dist(kpc) 1 Size, pc Age, y 17. 4 L/ 1033 erg/c 1600 8 Ѓ (slope) 2. 0 RX J 0852 Vela Junor 0. 2 (1) 6. 8(34) 400(5000) 0. 26(6. 40) 2. 2 RCW 86 1(2. 50) 11(28) 1600(10000) 1(6) 2. 5 SN 1006 2. 2 18. 3 1000 1. 24 2. 3 Cas A 3. 4 2. 5 350 7 2. 4 Tycho 1572 3. 5 6 443 0. 1 1. 95 SNR G 353. 6 -07 3. 2 27 2500 (14000) 10 2. 3

Molecular clouds : possibility to catch Pe. Vatrons If clouds is in a distance

Molecular clouds : possibility to catch Pe. Vatrons If clouds is in a distance of 100 pc from SNR flux will be in 10 times smaller, but duration Will be in 20 time longer – near to 10000 y/ Mass (104 - 105 ) M of Sun Density ~100 g/ cm 2 1% of Galaxy volume mostly from H 2

Gamma-ray astronomy and Crab nebular Explosion in 1054 , distance 2 kp, In the

Gamma-ray astronomy and Crab nebular Explosion in 1054 , distance 2 kp, In the centre of nebular –pulsar with 33 ms period First reliably registrated gamma-ray source T. Weeks 1989. 9 RMS 1. Steady gamma-radiation – standard candle 2. “pulsate” gamma-radiation 3. Gamma «bursts»

Inserlude: extensive atmospheric showers (EAS)

Inserlude: extensive atmospheric showers (EAS)

P, A increasing number of particles 20 -30 km Хmax = A + B

P, A increasing number of particles 20 -30 km Хmax = A + B Ln( E/A) Nmax 3 -5 км Shower particles Xmax – maximum of EAS develompent number of particles E Atomic number Energy Half of the particle in the circle of 80 m Shower core Energy of particles: Electrons: 30 -100 Me. V Particle detectors Muons 0. 5 Gev

P, A Registration of Chrenkov light for Ee >25 Me. V Ve > C/

P, A Registration of Chrenkov light for Ee >25 Me. V Ve > C/ n the air – speed of light in Cos (tet) =1/n 20 -30 km tet ~0. 5 deg Cherenkov light Q tot E Phonons detectors

Energy threshold of Cherenkov array Cherenkov pulse T signal noise = Sd– area of

Energy threshold of Cherenkov array Cherenkov pulse T signal noise = Sd– area of PMT QE- quantum efficiency Ss • Pph • QE • Sд • Iф • T Pph ~ E - energy of EAS Ethersh ~ Iф • • T 5 Pph– поток черенковских фотонов T - duration of pulse ( 10 - 20 ns) - FOV Iф – night light background Sд • Sd ~ 0. 1 m 2 и QE 0. 1 : Eth 200 Тe. V 3. 1012 m-2 sec 1

How select gamma-shower from proton shower Signal = (background )1. 2 F( gamma) x

How select gamma-shower from proton shower Signal = (background )1. 2 F( gamma) x S x T = 5 (F(CR)x S x Ω x T)1/2 Background selection : Imaging atmospheric Cherenkov telescope poor muons showers ( in gamma showers in 30 times smaller muons than in proton shower) Q = K signal / sqrt ( K background) K signal, Kback –rejection factors.

Short history of gamma-rays astronomy

Short history of gamma-rays astronomy

Cherenkov Technique used for Gamma Ray Astronomy Crimea Experiment 1959 -1965, Chudakov, et al.

Cherenkov Technique used for Gamma Ray Astronomy Crimea Experiment 1959 -1965, Chudakov, et al. , (SNR, radio galaxies)

First Gamma-ray Experiment at Whipple Observatory, 1967 -68 The pioneer, the #1 in gamma

First Gamma-ray Experiment at Whipple Observatory, 1967 -68 The pioneer, the #1 in gamma astronomy 56

The Pioneer Trevor Weekes and his 10 m Ø Whipple telescope gave birth to

The Pioneer Trevor Weekes and his 10 m Ø Whipple telescope gave birth to g-ray astrophysics: 9 s from Crab Nebula in 1988 ! „If a telescope can within a few s evaporate a solid piece of steel, it can also measure gamma rays“ ; -) 57

Instruments

Instruments

Number of muons in proton EAS in 30 times more than in gamma-EAS

Number of muons in proton EAS in 30 times more than in gamma-EAS

HAWC (High Altitude Water Cherenkov) Te. V Gamma-Ray Observatory

HAWC (High Altitude Water Cherenkov) Te. V Gamma-Ray Observatory

HAWC Site Location in Mexico • 4100 m (13, 500’) above sea level •

HAWC Site Location in Mexico • 4100 m (13, 500’) above sea level • Latitude of 19 deg N • Temperate Climate • Existing Infrastructure HAWC Large Millimeter Telescope (50 m dia. dish) Pico de Orizaba 5600 m (18, 500’)

NEW projects

NEW projects

An observatory for ground based gamma-ray astronomy: CTA 3 types of mirrors: 24 m

An observatory for ground based gamma-ray astronomy: CTA 3 types of mirrors: 24 m diameter , FOV 4 -5 deg 10 m , FOV 6 -8 deg ( 100 Ge. V – 10 Te. V) 4 -6 m FOV 10 deg > 10 Тe. V

LHAASO——The third generation of survey facility for VHE γray sources 24 Wide FOV air

LHAASO——The third generation of survey facility for VHE γray sources 24 Wide FOV air Cherenkov image Telescopes. For Air Fluorescence measurement above 0. 1 Ee. V also 400 burst detectors For high energy Secondary particles Near the core of air showers 6100 scintillator detectors and 1200 μdetector s form an array covering 1 km 2 LHAASO Layout in 1 km 2 at 4300 m a. s. l. 90 k square meter Water Cherenkov Deter array. Each one has a size of HAWC

Survey for γ-sources very detailed spectroscopy investigation ( a few hundred extra-galactic sources are

Survey for γ-sources very detailed spectroscopy investigation ( a few hundred extra-galactic sources are expected ) 1000 10 Ev/yr

Thank you

Thank you