SUVACI RESEARCH GROUP Lets Shape the Future through

  • Slides: 42
Download presentation
SUVACI RESEARCH GROUP Let’s Shape the Future through Materials Science Ender SUVACI Eskişehir Technical

SUVACI RESEARCH GROUP Let’s Shape the Future through Materials Science Ender SUVACI Eskişehir Technical University esuvaci@anadolu. edu. tr https: //endersuvaci. wordpress. com

Objective • Increase awareness about Properties of Materials

Objective • Increase awareness about Properties of Materials

Materials Science and Engineering PERFORMANCE PROCESSING PROPERTIES STRUCTURE • Atomic structure • Electronic structure

Materials Science and Engineering PERFORMANCE PROCESSING PROPERTIES STRUCTURE • Atomic structure • Electronic structure • Crystal structure • Nanostructure • Microstructure • Macrostructure

From Macrostructure to Atomic Structure; Structure Levels; Macro Structure https: //www. youtube. com/watch? v=_n-h.

From Macrostructure to Atomic Structure; Structure Levels; Macro Structure https: //www. youtube. com/watch? v=_n-h. Dut. A 5 ws

From Macrostructure to Atomic Structure; Structure Levels; Micro Structure Suvacı Research Group (SRG) Anadolu

From Macrostructure to Atomic Structure; Structure Levels; Micro Structure Suvacı Research Group (SRG) Anadolu University

From Macrostructure to Atomic Structure; Structure Levels; Nano Structure http: //phys. org/news/2012 -01 -graphene-quantum-dots-big-small.

From Macrostructure to Atomic Structure; Structure Levels; Nano Structure http: //phys. org/news/2012 -01 -graphene-quantum-dots-big-small. html https: //www. bo. imm. cnr. it/site/node/561 6

From Macrostructure to Atomic Structure; Structure Levels; Atomic Structure http: //physics. oregonstate. edu/~minote/COURSES/ph 427/doku.

From Macrostructure to Atomic Structure; Structure Levels; Atomic Structure http: //physics. oregonstate. edu/~minote/COURSES/ph 427/doku. php? id=1 7

Materials Science and Engineering PERFORMANCE PROCESSING PROPERTIES STRUCTURE • Atomic structure • Electronic structure

Materials Science and Engineering PERFORMANCE PROCESSING PROPERTIES STRUCTURE • Atomic structure • Electronic structure • Crystal structure • Nanostructure • Microstructure • Macrostructure

Property? ? ? Response= Property x Stimulus (external influence/field/force…)

Property? ? ? Response= Property x Stimulus (external influence/field/force…)

Property A coefficient, that determines the magnitude of the response when the material is

Property A coefficient, that determines the magnitude of the response when the material is subjected to a stimulus (or external field/force).

Materials Science and Engineering PERFORMANCE PROCESSING STRUCTURE • Atomic structure • Electronic structure •

Materials Science and Engineering PERFORMANCE PROCESSING STRUCTURE • Atomic structure • Electronic structure • Crystal structure • Nanostructure • Microstructure • Macrostructure PROPERTIES Physical Chemical ? ?

Chemical Properties • how a material interacts with another material • “social” behavior •

Chemical Properties • how a material interacts with another material • “social” behavior • response to other matter (or lack of response) • reactions

Chemical Properties • Examples: – – – burning reaction with acid reaction with water

Chemical Properties • Examples: – – – burning reaction with acid reaction with water corrosion/rusting/oxidation others? ?

Physical Properties • characteristics it possesses by itself (in and of itself) • “personal”

Physical Properties • characteristics it possesses by itself (in and of itself) • “personal” traits

Physical Properties • • • color size texture melting point boiling point solubility •

Physical Properties • • • color size texture melting point boiling point solubility • • • luster density magnetism odor viscosity

Materials Science and Engineering PERFORMANCE PROCESSING STRUCTURE • Atomic structure • Electronic structure •

Materials Science and Engineering PERFORMANCE PROCESSING STRUCTURE • Atomic structure • Electronic structure • Crystal structure • Nanostructure • Microstructure • Macrostructure PROPERTIES Mechanical Thermal Optical Electrical Magnetic Chemical Biological Nuclear

 • Electrical properties – conductor or insulator • Optical properties – response to

• Electrical properties – conductor or insulator • Optical properties – response to light – index of refraction – bending of light – transparent – light passes through – translucent – some light passes through but no distinct image – opaque – no light passes through

 • Thermal properties – response to heat – conductivity – specific heat –

• Thermal properties – response to heat – conductivity – specific heat – how much energy it takes to change temperature – thermal expansion – example: iron wire demo

Mechanical Properties • response to force or stress – force – a push or

Mechanical Properties • response to force or stress – force – a push or pull – stress – force causing a deformation or distortion (force per unit area)

Mechanical Properties Examples • workability – malleability – can be flattened – ductility –

Mechanical Properties Examples • workability – malleability – can be flattened – ductility – can be drawn into wire (stretched), bent, or extruded

Mechanical Properties Examples • brittleness – breaks instead of deforming when stress is applied

Mechanical Properties Examples • brittleness – breaks instead of deforming when stress is applied • hardness – resistance to denting or scratching

Mechanical Properties Examples • elasticity – ability to return to original shape after being

Mechanical Properties Examples • elasticity – ability to return to original shape after being deformed by stress – rubber ball or piece of elastic • plasticity – retains new shape after being deformed by stress – wet clay ball or piece of polyethylene food wrap

Mechanical Properties Examples • toughness – ability to absorb energy – resistance to fracture

Mechanical Properties Examples • toughness – ability to absorb energy – resistance to fracture • strength – resistance to distortion by stress or force – several types: tensile, compressive, torsional, bending, shear

Types of Stresses/Forces • Tension – pulling – examples: tug-of-war, slingshot • Compression –

Types of Stresses/Forces • Tension – pulling – examples: tug-of-war, slingshot • Compression – pushing together or squeezing – examples: bed springs, can crusher, bench vise

straight line = elastic region curved line = plastic region Ceramic or glass stress

straight line = elastic region curved line = plastic region Ceramic or glass stress metal polymer strain

1. 5. 3 A first encounter with symmetry

1. 5. 3 A first encounter with symmetry

1. 5. 3 A first encounter with symmetry

1. 5. 3 A first encounter with symmetry

1. 5. 3 A first encounter with symmetry

1. 5. 3 A first encounter with symmetry

Passive Infrared Sensor-PIR

Passive Infrared Sensor-PIR

Better Diesel Injection Systems for a Sustainable Future

Better Diesel Injection Systems for a Sustainable Future

33

33

Ba. Ti. O 3 20 m *Electrical characterization results, courtesy of SIEMENS AG Corporate

Ba. Ti. O 3 20 m *Electrical characterization results, courtesy of SIEMENS AG Corporate Technology. T. Richter, E. Suvacı, et al. , J. Amer. Ceram. Soc. , 91 (3) 929 -933 (2008)

Heat Insulation in Refrigerators (please see the poster on the hallway)

Heat Insulation in Refrigerators (please see the poster on the hallway)

Sert Poliüretan Köpükte Isıl Özellikler λt= λm+ λr+ λg λr, radyasyon (ışınım) ile ısı

Sert Poliüretan Köpükte Isıl Özellikler λt= λm+ λr+ λg λr, radyasyon (ışınım) ile ısı iletimi λm, katı polimer matrisinin ısıl iletimi %25 -35 %20 -30 %50 -60 λg, gazın ısıl iletimi ɸ= Hücre çapı ρf= Köpük yoğunluğu ρs= Katı polimer yoğunluğu Glicksman tarafından Kw = 60000 m-1 olarak bulunmuştur Smits, G. F. , “Effect of Cellsize Reduction on Polyurethane Foam Physical Properties”, DOW Benelux J. THERMAL INSUL. AND BLDG. ENVS. , 17, 1994. Gibson, L. J. ve Ashby, M. F. , (1997), Cellular Solids, (2. baskı), Cambridge Solid State Science Series Yayınları

Yapı - Özellik İlişkisi-Isıl iletkenlik Hücre boyutu-ısıl iletkenlik ilişkisi Ortalama serbest yol (Knudsen etkisi)

Yapı - Özellik İlişkisi-Isıl iletkenlik Hücre boyutu-ısıl iletkenlik ilişkisi Ortalama serbest yol (Knudsen etkisi) Hücre boyutu <10 μm ise bu etki görülür 2. Bölge Ortalama hücre boyutu (um) 1. Bölge 3. Bölge 4. Bölge Sinofsky, M. , Property measurement and thermal performance prediction of foam insulation, Yüksek lisans tezi, MIT, Cambridge Massachusetts, 1984.

High Purity Oxide Targets for Anti. Reflecting Thin Film Coatings http: //www. gkboptical. com/lens-coating/

High Purity Oxide Targets for Anti. Reflecting Thin Film Coatings http: //www. gkboptical. com/lens-coating/ 38

High purity is very critical! Impurities of transition elements can affect transmission properties of

High purity is very critical! Impurities of transition elements can affect transmission properties of dielectric layers. ü applicable for ultraviolet (~200 nm)-infrared (~3 mm) region antireflecting coatings, ü low material damage and limited absorption during high energy laser applications, ü Coating material for windows, prisms, lenses, high energy laser optics

Development of Longer Cycle Life Lead Acid Batteries

Development of Longer Cycle Life Lead Acid Batteries

Capacity (A. h) Cycle Number Fumed Silika (Si. O 2) + Boroksit, (B 2

Capacity (A. h) Cycle Number Fumed Silika (Si. O 2) + Boroksit, (B 2 O 3) Fumed Silika, (Si. O 2) + Alüminyum Oksit, (Al 2 O 3) Fumed Silika, (Si. O 2) + Magnezyum Sülfat, (Mg. SO 4) Fumed Silika, (Si. O 2) + Sodyum Sülfat, (Na 2 SO 4), Fumed Silika, (Si. O 2) + Titanyum (IV) Oksit, (Ti. O 2) Fumed Silika, (Si. O 2) + Alüminyum Oksit, (Al 2 O 3) + Titanyum (IV) Oksit, (Ti. O 2) + Boroksit, (B 2 O 3) Fumed Silika, (Si. O 2) + Alüminyum Oksit, (Al 2 O 3) + Titanyum (IV) Oksit, (Ti. O 2)) Fumed Silika, (Si. O 2) + Alüminyum Oksit, (Al 2 O 3) + Boroksit, (B 2 O 3) Sülfürik Asit, (H 2 SO 4)

Thank You

Thank You