Stretcher and compressor design for the Apollon 10

  • Slides: 24
Download presentation
Stretcher and compressor design for the Apollon 10 P ILE laser facility Loïc Le

Stretcher and compressor design for the Apollon 10 P ILE laser facility Loïc Le Gat* 1, 2 and Catherine Le Blanc 2 1 Institut de la Lumière Extrême, CNRS, Ecole Polytechnique, ENSTA Paris Tech, Institut d’Optique, Univ Paris-Sud, Palaiseau Cedex, France 2 Laboratoire pour l’Utilisation des Lasers Intenses - Ecole Polytechnique, 91128 Palaiseau, France *Loic. legat@polytechnique. edu ICUIL 2010 Conference September 26 - October 1 Watkins Glen, New York Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 1

Outline Introduction to the ILE facility Stretcher design study Compressor design study Spectral Phase

Outline Introduction to the ILE facility Stretcher design study Compressor design study Spectral Phase Management Conclusion and perspective Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 2

Introduction to the ILE facility Amplifiers Stretcher KHz Ti: Sa 25 fs @ 800

Introduction to the ILE facility Amplifiers Stretcher KHz Ti: Sa 25 fs @ 800 nm 1. 5 m. J synchronized Spectral broadening < 10 fs @ 800 nm 100 µJ, k. Hz Front End Yb: KYW Diode pumped 2 ns, 2 m. J @ 1030 nm Amplis Yb: KGW Yb: YAG Diode pumped 2 J @ 1030 nm >10 Hz OPCPA 10 Ampli 0 2 J /1 Hz Ampli 1 « LASERIX » 50 J /0. 1 Hz Ampli 2 600 J -1 shot/mn Nd YAG 6 J/1 Hz Nd Glass 100 J/0. 1 Hz Nd Glass 1. 5 KJ – 1 tr/mn LBO/BBO “ 10 fs“ Compression and SHG 1 à 100 ps 1 J @ 515 nm >10 Hz (80 nm FWHM) @ 800 nm 100 m. J 180 mm Compressor 150 J / 15 fs @1 shot/mn 10 PW G 4 250 J “ 15 fs” (65 nm FWHM) G 1 400 mm G 2 G 3 Grating size : 910 x 455 mm Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 3

Stretcher design study Stretcher specifications: • Spectral bandwidth acceptance: 700 -900 nm • Only

Stretcher design study Stretcher specifications: • Spectral bandwidth acceptance: 700 -900 nm • Only reflective optics can be used • High transmission efficiency • Low temporal and spatial aberrations are required • High stretching ratio = 13 ps/nm • The size of the optics is a constraint Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 4

Single grating stretcher: scheme • Distance grating – center of curvature linked to the

Single grating stretcher: scheme • Distance grating – center of curvature linked to the stretching ratio. • Roof mirror for a second pass. Top view 1000 mm Convexe mirror R 500 Concave mirror R 1000 Grating Center of curvature 275 mm 500 mm x Roof mirrors Z (optical axis) y 800 nm beam Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 5

Spatial characteristics of the output beam: Spot diagram and aberrations Strehl ratio = 0.

Spatial characteristics of the output beam: Spot diagram and aberrations Strehl ratio = 0. 17 2000 1500 1000 Lateral aberrations (µm) 12. 8 mm 3. 4 mm 500 Airy disk = 200 µm 0 -1. 5 -1 -0. 5 0 0. 5 1 1. 5 -500 Pupil position (AU) 350 Spot diagram at the single grating 300 stretcher output 250 Spot diagram at the stretcher output, after a perfect focal lens (f 1000) 200 150 Vertical aberrations (µm) x 100 Point Spread Function 50 -1. 5 -1 0 -0. 5 -50 0 0. 5 -100 -150 Pupil position (AU) Apollon 1 1. 5 y Blue = 800 nm Green = 700 nm Red = 900 nm Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 6

Increasing the radii in the afocal system to reduce aberrations = increasing the ratio:

Increasing the radii in the afocal system to reduce aberrations = increasing the ratio: For a R 2000 concave mirror and a R 1000 convex one: Airy disk 200 µm 10 mm Blue = 800 nm Green = 700 nm Red = 900 nm x Spot diagram at the output of the stretcher y Spot diagram after a perfect focal lens (f 1000) Aberrations 50 times lower Concave mirror is a Φ 800 mm (instead of Φ 400 for a R 1000) !! Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 7

Two gratings stretcher: scheme • One grating is placed on the center of curvature.

Two gratings stretcher: scheme • One grating is placed on the center of curvature. • Stretching ratio related to the distance between the 2 gratings 1000 mm Grating 1 487 mm Center of curvature 500 mm Grating 2 Roof mirror 2 x Roof mirror 1 Z (optical axis) Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 y 28/09/2010 8

Spatial characteristics of the output beam: Spot diagram and aberrations Strehl ratio = 0.

Spatial characteristics of the output beam: Spot diagram and aberrations Strehl ratio = 0. 91 10 mm Spot diagram at the output of the two gratings stretcher x y Airy disk : Ø 200 µm Point Spread Function Spot diagram after a perfect focal lens (f 1000) Apollon Blue = 800 nm Green = 700 nm Red = 900 nm Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 9

Conclusion • A two gratings design reduces spatial aberrations • Alignment procedure is more

Conclusion • A two gratings design reduces spatial aberrations • Alignment procedure is more complicated • Vertical chirp improved by replacing the second-pass roof mirror by a corner cube Concave mirror Convex mirror Grating 1 200 mm 400 mm 70 mm 280 mm Grating 2 Roof mirror 200 mm Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 10

Compressor design Compressor specifications: • Pulse to recompress: – 250 J of input energy,

Compressor design Compressor specifications: • Pulse to recompress: – 250 J of input energy, 15 fs output, 65 nm @800 nm (stretched with 13 ps/mm) • Gold coating: max fluence on the grating = 150 m. J/cm² • Beam size Φ 400 mm • 4 ultra-wide monolithic gratings (Livermore gratings 910 x 455 mm²) Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 11

Several cases studied 1200 mm 1400 mm 1600 gv/mm 1740 gv/mm 1200 mm 1400

Several cases studied 1200 mm 1400 mm 1600 gv/mm 1740 gv/mm 1200 mm 1400 mm • 15° and 35° of deviation (difference angle of incidence – diffracted angle) 1200 gv/mm • Densities studied: 1200, 1480, 1600 and 1740 gv/mm 1090 mm 1200 gv/mm • 15° leads to geometrical issues 910 mm 1480 gv/mm 910 mm y Best solution !! x Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 Z (optical axis) 28/09/2010 12

Livermore gold gratings specifications 65 % of transmission expected for the 4 gratings Apollon

Livermore gold gratings specifications 65 % of transmission expected for the 4 gratings Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 13

4 gratings compressor: calculation of the transmited spectrum for a 400 mm diameter beam

4 gratings compressor: calculation of the transmited spectrum for a 400 mm diameter beam size Input spectrum Compressor spectral transmission FWHM spectrum : 65 nm Full transmitted wavelength : 754 nm to 842 nm Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 14

Compressor characteristics 400 mm Spot diagram at the output of the compressor x •

Compressor characteristics 400 mm Spot diagram at the output of the compressor x • • • y Four gratings configuration (in line) Grating size: 910 x 455 mm² Grating density: 1480 gv/mm Angle of incidence: 56° Distance between gratings = 950 mm / stretching ratio = 13 ps/mm Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 15

Misalignment study: X tilt / Z tilt of the 1 st grating • •

Misalignment study: X tilt / Z tilt of the 1 st grating • • Rotation of the first grating of 0. 1° around the x axis (1. 7 mrad) horizontal dispersion of 127µm Blue = 800 nm Green = 700 nm Red = 900 nm 127 µm Spot diagram at the output of the compressor, after a perfect focal lens (f 1000) • Z tilt (parallel to the grating grooves) on the first grating of 0. 1° (1. 7 mrad) vertical dispersion of 226µm (Y tilt is twice less): 226 µm Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 Spot diagram at the output of the compressor, after a perfect focal lens (f 1000) 28/09/2010 16

Spectral phase management Study and optimization of the stretcher specifications: • First step :

Spectral phase management Study and optimization of the stretcher specifications: • First step : stretcher and compressor gratings have 1480 gv/mm Compressor charac. : • 1480 gv/mm • incidence = 56° • Zc = 950 mm Residual phase 0. 00 700. 00 750. 00 800. 00 Pulse duration 850. 00 1. 00 900. 00 Intensity (AU) Phase (rad) -0. 05 -0. 10 -0. 15 15 fs 0. 50 -0. 25 Wavelength (nm) Apollon 0. 00 4. 00 E-13 Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 4. 50 E-13 Time (s) 5. 00 E-13 28/09/2010 17

Materials dispersion compensation • System stretcher – amplifiers – compressor with 1480 gv/mm gratings

Materials dispersion compensation • System stretcher – amplifiers – compressor with 1480 gv/mm gratings • The amplification chain uses: Calcite, Silicium, Ti: Saph, etc… Optimized stretcher charac. : • 1480 gv/mm • incidence = 56. 67° • Zc = 960. 57 mm Output pulse duration 1. 00 Residual phase Phase (rad) 0. 00 700. 00 -3. 00 750. 00 800. 00 -6. 00 850. 00 900. 00 Intensity (AU) 3. 00 0. 50 -9. 00 -12. 00 -15. 00 -18. 00 Wavelength (nm) Apollon 0. 00 2. 00 E-13 3. 00 E-13 Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 4. 00 E-13 5. 00 E-13 Time (s) 6. 00 E-13 7. 00 E-13 28/09/2010 18

Changing the number of grooves: compensate the dispersion Optimized stretcher charac. : • 1429

Changing the number of grooves: compensate the dispersion Optimized stretcher charac. : • 1429 gv/mm • incidence = 50. 13° • Zc = 1160 mm Output pulse duration Residual phase 1. 00 2. 00 1. 60 Intensity (AU) 1. 20 Phase (rad) 0. 80 0. 40 0. 00 700. 00 -0. 40 750. 00 800. 00 850. 00 15. 9 fs 0. 50 900. 00 -0. 80 -1. 20 0. 00 3. 00 E-13 -1. 60 4. 00 E-13 5. 00 E-13 6. 00 E-13 Time (s) -2. 00 Wavelength (nm) Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 19

Best compromise: 1450 gv/mm Optimized stretcher charac. : • 1450 gv/mm • incidence =

Best compromise: 1450 gv/mm Optimized stretcher charac. : • 1450 gv/mm • incidence = 55. 4° • Zc = 974 mm Output pulse duration 1. 00 Residual phase 1. 00 750. 00 800. 00 -2. 00 Phase (rad) 850. 00 900. 00 Intensity (AU) 0. 00 700. 00 -1. 00 -3. 00 -4. 00 0. 50 -5. 00 -6. 00 -7. 00 -8. 00 -9. 00 Wavelength (nm) 0. 00 3. 00 E-13 4. 00 E-13 5. 00 E-13 6. 00 E-13 Time (s) Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 20

Phase and duration for a 30 fs input pulse • The software is now

Phase and duration for a 30 fs input pulse • The software is now able to suppress the phase along the whole spectrum 0. 40 1. 00 0. 80 0. 30 30. 9 fs 0. 10 0. 00 750. 00 -0. 10 770. 00 790. 00 810. 00 830. 00 850. 00 Intensity (AU) Phase (rad) 0. 20 0. 60 0. 40 0. 20 -0. 30 -0. 40 Wavelength (nm) Apollon 0. 00 8. 00 E-13 8. 50 E-13 Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 9. 00 E-13 Time (s) 9. 50 E-13 1. 00 E-12 28/09/2010 21

Conclusion • By decreasing the number of grooves in the stretcher, we can: –

Conclusion • By decreasing the number of grooves in the stretcher, we can: – Manage more dispersive materials in the amplification chain – Compensate part of material dispersion • The residual phase has to be compensated by a setup like a Dazzler to allow good recompression Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 22

Conclusion and perspective • Stretcher and compressor have been dimensioned for a 15 fs

Conclusion and perspective • Stretcher and compressor have been dimensioned for a 15 fs pulse • Residual spectral phase still exists but should be actively controled by a Dazzler – Such pulse duration represents a challenge for the ILE project • To be done: – – Stretcher will be installed in 2011 Livermore gold gratings will be received in 6 months Compressor in 2013 Collaboration projects to increase the grating damage threshold Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 23

Thank you for your attention ! Apollon Loïc LE GAT – ICUIL, Watkins Glen,

Thank you for your attention ! Apollon Loïc LE GAT – ICUIL, Watkins Glen, NY, 2010 28/09/2010 24