Stochastic models time series Random process an infinite

  • Slides: 24
Download presentation
Stochastic models - time series. Random process. an infinite collection of consistent distributions probabilities

Stochastic models - time series. Random process. an infinite collection of consistent distributions probabilities exist Random function. a family of random variables, e. g. {Y(t), t in Z}

Specified if given F(y 1, . . . , yn; t 1 , .

Specified if given F(y 1, . . . , yn; t 1 , . . . , tn ) = Prob{Y(t 1) y 1, . . . , Y(tn ) yn } that are symmetric F( y; t) = F(y; t), a permutation compatible F(y 1 , . . . , ym , , . . . , ; t 1, . . . , tm+1, . . . , tn} = F(y 1, . . . , ym; t 1, . . . , tm)

Finite dimensional distributions First-order F(y; t) = Prob{Y(t) t} Second-order F(y 1, y 2;

Finite dimensional distributions First-order F(y; t) = Prob{Y(t) t} Second-order F(y 1, y 2; t 1, t 2) = Prob{Y(t 1) y 1 and Y(t 2) y 2} and so on

Other methods i) Y(t; ), : random variable ii) urn model iii) probability on

Other methods i) Y(t; ), : random variable ii) urn model iii) probability on function space iv) analytic formula Y(t) = cos( t + ) : fixed : uniform on (- , ]

There may be densities The Y(t) may be discrete, angles, proportions, . . .

There may be densities The Y(t) may be discrete, angles, proportions, . . . Kolmogorov extension theorem. To specify a stochastic process give the distribution of any finite subset {Y( 1), . . . , Y( n)} in a consistent way, in A

Moment functions. Mean function c. Y(t) = E{Y(t)} = y d. F(y; t) =

Moment functions. Mean function c. Y(t) = E{Y(t)} = y d. F(y; t) = y f(y; t) dy if continuous = yjf(yj; t) if discrete E{ 1 Y 1(t) + 2 Y 2(t)} = 1 c 1(t) + 2 c 2(t) vector-valued case mean level - signal plus noise: S(t) + (t) S(. ): fixed

Second-moments. autocovariance function c. YY(s, t) = cov{Y(s), Y(t)} = E{Y(s)Y(t)} - E{Y(s)}E{Y(t)} non-negative

Second-moments. autocovariance function c. YY(s, t) = cov{Y(s), Y(t)} = E{Y(s)Y(t)} - E{Y(s)}E{Y(t)} non-negative definite j kc. YY(tj , tk ) 0 crosscovariance function c 12(s, t) = cov{Y 1(s), Y 2(t)} scalars

Stationarity. Joint distributions, {Y(t+u 1), . . . , Y(t+uk-1), Y(t)}, do not depend

Stationarity. Joint distributions, {Y(t+u 1), . . . , Y(t+uk-1), Y(t)}, do not depend on t for k=1, 2, . . . Often reasonable in practice - for some time stretches Replaces "identically distributed"

mean E{Y(t)} = c. Y for t in Z autocovariance function cov{Y(t+u), Y(t)} =

mean E{Y(t)} = c. Y for t in Z autocovariance function cov{Y(t+u), Y(t)} = c. YY(u) t, u in Z u: lag = E{Y(t+u)Y(t)} if mean 0 autocorrelation function (u) = corr{Y(t+u), Y(t)}, | (u)| 1 crosscovariance function cov{X(t+u), Y(t)} = c. XY(u)

joint density Prob{x < Y(t+u) < x+dx and y < Y(t) < y+ dy}

joint density Prob{x < Y(t+u) < x+dx and y < Y(t) < y+ dy} = f(x, y|u) dxdy

Some useful models Chatfield notation Purely random / white noise often mean 0 Building

Some useful models Chatfield notation Purely random / white noise often mean 0 Building block

Random walk not stationary

Random walk not stationary

Moving average, MA(q) From (*) stationary

Moving average, MA(q) From (*) stationary

MA(1) 0=1 1 = -. 7

MA(1) 0=1 1 = -. 7

Backward shift operator Linear process. Need convergence condition

Backward shift operator Linear process. Need convergence condition

autoregressive process, AR(p) first-order, AR(1) Markov * Linear process For convergence/stationarity

autoregressive process, AR(p) first-order, AR(1) Markov * Linear process For convergence/stationarity

a. c. f. From (*) p. a. c. f. corr{Y(t), Y(t-m)|Y(t-1), . . .

a. c. f. From (*) p. a. c. f. corr{Y(t), Y(t-m)|Y(t-1), . . . , Y(t-m+1)} = 0 for m p when Y is AR(p) linearly

In general case, Useful for prediction

In general case, Useful for prediction

ARMA(p, q)

ARMA(p, q)

ARIMA(p, d, q).

ARIMA(p, d, q).

Some series and acf’s

Some series and acf’s

Yule-Walker equations for AR(p). Correlate, with Xt-k , each side of

Yule-Walker equations for AR(p). Correlate, with Xt-k , each side of

Cumulants. multilinear functional 0 if some subset of variantes independent of rest 0 of

Cumulants. multilinear functional 0 if some subset of variantes independent of rest 0 of order > 2 for normal is determined by its moments