Steiner tree LP xe 1 if edge e

















- Slides: 17

Steiner tree LP xe = 1 if edge e is included in the Steiner tree. Min. e cexe s. t. (primal) eÎ (S) xe ≥ 1 terminal SÍV: SÇT≠Æ, TS≠Æ xe Î {0, 1} xe ≥ 0 (1) terminal S Relax (1) to xe ≥ 0 to get an LP.

The Steiner tree dual: a combinatorial motivation Let S : = {SÍV: SÇT≠Æ, TS≠Æ } Think of each set S in S as a region around which a “moat” has to be built. y. S = width of this moat {y. S } º moat packing around terminals. terminal non-terminal v cuv SÎS: eÎ (S) y. S ≤ ce "e y. S ≥ 0 Max. SÎS y. S u Width of a feasible moat packing is a lower bound on OPT – Weak Duality.

The Steiner tree dual: an economic motivation Let S : = {SÍV: SÇT≠Æ, TS≠Æ } Each set S in S represents a coalition of terminals. y. S = payment that coalition S is willing to make to get itselfconnected terminal non-terminal v cuv SÎS: eÎ (S) y. S ≤ ce "e y. S ≥ 0 Max. SÎS y. S u Any payment scheme yields a lower bound on OPT – Weak Duality.

Primal-dual algorithm for Steiner tree Let S : = {SÍV: SÇT≠Æ, TS≠Æ } Max. SÎS y. S (dual) Min. e cexe (primal) SÎS: eÎ (S) y. S ≤ ce "e eÎ (S) xe ≥ 1 SÎS y. S ≥ 0 xe ≥ 0 Build an integer feasible primal solution x and a dual feasible solution y 1. Initialize F =Æ, y. S = 0 for all SÎS. 2. V = minimal violated sets 3. = {SÎS: S is minimal s. t. d(S)ÇF=Æ } 2. While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. 3. (Reverse delete) Consider edges of F in reverse order, drop e if F{e} is feasible.

Primal-dual algorithm for Steiner tree in action F = Æ, y. S = 0 for all SÎS t=0 terminal non-terminal v cuv u

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=2 t=1 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=3 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=3 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=3 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=4 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=4 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action V: = {SÎS: S minimal s. t. FÇd(S)=Æ} While V≠Æ – Raise y. S uniformly "SÎV until some edge eÎd(S) for some SÎV goes tight. – F ¬ FÈ {e}. Update V. t=5 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action Reverse delete: Consider edges of F in reverse insertion order and delete e if F{e} is feasible t=5 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action Reverse delete: Consider edges of F in reverse insertion order and delete e if F{e} is feasible t=5 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action Reverse delete: Consider edges of F in reverse insertion order and delete e if F{e} is feasible t=5 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action Reverse delete: Consider edges of F in reverse insertion order and delete e if F{e} is feasible t=5 terminal non-terminal v cuv u edge in F

Primal-dual algorithm for Steiner tree in action Final Steiner Tree t=5 terminal non-terminal v cuv u edge in F
Rudolf steiner franziska blie steiner
Prize collecting steiner tree
Rising edge and falling edge
Rezeptionsfähigkeit bedeutung
Interactive and coactive groups
George steiner dopo babele
Waldorf color theory
Ta diagrams
Bishop sandra steiner ball
Kathrin scharnhorst
Lavidge and steiner model
Rudolf steiner theory
George steiner hermeneutic motion
Ann steiner md
Steiner
Aria at steiner ranch
Dollz aim
Steiner-muller economy classification system