Statistics for Business and Economics 6 th Edition

  • Slides: 50
Download presentation
Statistics for Business and Economics 6 th Edition Chapter 7 Sampling and Sampling Distributions

Statistics for Business and Economics 6 th Edition Chapter 7 Sampling and Sampling Distributions Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Chap 7 -1

Chapter Goals After completing this chapter, you should be able to: § Describe a

Chapter Goals After completing this chapter, you should be able to: § Describe a simple random sample and why sampling is important § Explain the difference between descriptive and inferential statistics § Define the concept of a sampling distribution § Determine the mean and standard deviation for the sampling distribution of the sample mean, § Describe the Central Limit Theorem and its importance § Determine the mean and standard deviation for the sampling distribution of the sample proportion, § Describe sampling distributions of sample variances Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 2

Tools of Business Statistics § Descriptive statistics § § Collecting, presenting, and describing data

Tools of Business Statistics § Descriptive statistics § § Collecting, presenting, and describing data Inferential statistics § Drawing conclusions and/or making decisions concerning a population based only on sample data Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 3

Populations and Samples § A Population is the set of all items or individuals

Populations and Samples § A Population is the set of all items or individuals of interest § § Examples: All likely voters in the next election All parts produced today All sales receipts for November A Sample is a subset of the population § Examples: 1000 voters selected at random for interview A few parts selected for destructive testing Random receipts selected for audit Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 4

Population vs. Sample Population a b Sample cd b ef gh i jk l

Population vs. Sample Population a b Sample cd b ef gh i jk l m n o p q rs t u v w x y z Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. c gi o n r u y 5

Why Sample? § Less time consuming than a census § Less costly to administer

Why Sample? § Less time consuming than a census § Less costly to administer than a census § It is possible to obtain statistical results of a sufficiently high precision based on samples. Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 6

Simple Random Samples § § Every object in the population has an equal chance

Simple Random Samples § § Every object in the population has an equal chance of being selected Objects are selected independently Samples can be obtained from a table of random numbers or computer random number generators A simple random sample is the ideal against which other sample methods are compared Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 7

Inferential Statistics § Making statements about a population by examining sample results Sample statistics

Inferential Statistics § Making statements about a population by examining sample results Sample statistics (known) Population parameters Inference Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. (unknown, but can be estimated from sample evidence) 8

Inferential Statistics Drawing conclusions and/or making decisions concerning a population based on sample results.

Inferential Statistics Drawing conclusions and/or making decisions concerning a population based on sample results. § Estimation § § e. g. , Estimate the population mean weight using the sample mean weight Hypothesis Testing § e. g. , Use sample evidence to test the claim that the population mean weight is 120 pounds Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 9

Sampling Distributions § A sampling distribution is a distribution of all of the possible

Sampling Distributions § A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 10

Chapter Outline Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion

Chapter Outline Sampling Distributions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Sampling Distribution of Sample Variance 11

Sampling Distributions of Sample Means Sampling Distribution of Sample Mean Sampling Distribution of Sample

Sampling Distributions of Sample Means Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Sampling Distribution of Sample Variance 12

Developing a Sampling Distribution § § Assume there is a population … Population size

Developing a Sampling Distribution § § Assume there is a population … Population size N=4 A B C D Random variable, X, is age of individuals Values of X: 18, 20, 22, 24 (years) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 13

Developing a Sampling Distribution (continued) Summary Measures for the Population Distribution: P(x). 25 0

Developing a Sampling Distribution (continued) Summary Measures for the Population Distribution: P(x). 25 0 18 20 22 24 A B C D x Uniform Distribution Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 14

Developing a Sampling Distribution (continued) Now consider all possible samples of size n =

Developing a Sampling Distribution (continued) Now consider all possible samples of size n = 2 16 Sample Means 16 possible samples (sampling with replacement) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 15

Developing a Sampling Distribution (continued) Sampling Distribution of All Sample Means Distribution 16 Sample

Developing a Sampling Distribution (continued) Sampling Distribution of All Sample Means Distribution 16 Sample Means _ P(X). 3. 2. 1 0 18 19 20 21 22 23 (no longer uniform) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 24 _ X 16

Developing a Sampling Distribution (continued) Summary Measures of this Sampling Distribution: Statistics for Business

Developing a Sampling Distribution (continued) Summary Measures of this Sampling Distribution: Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 17

Comparing the Population with its Sampling Distribution Population N=4 Sample Means Distribution n=2 _

Comparing the Population with its Sampling Distribution Population N=4 Sample Means Distribution n=2 _ P(X). 3 . 2 . 1 0 18 20 22 24 A B C D X Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 0 18 19 20 21 22 23 24 _ X 18

Expected Value of Sample Mean § § Let X 1, X 2, . .

Expected Value of Sample Mean § § Let X 1, X 2, . . . Xn represent a random sample from a population The sample mean value of these observations is defined as Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 19

Standard Error of the Mean § § § Different samples of the same size

Standard Error of the Mean § § § Different samples of the same size from the same population will yield different sample means A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean: Note that the standard error of the mean decreases as the sample size increases Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 20

If the Population is Normal § If a population is normal with mean μ

If the Population is Normal § If a population is normal with mean μ and standard deviation σ, the sampling distribution of is also normally distributed with and Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 21

Z-value for Sampling Distribution of the Mean § Z-value for the sampling distribution of

Z-value for Sampling Distribution of the Mean § Z-value for the sampling distribution of where: : = sample mean = population standard deviation n = sample size Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 22

Finite Population Correction § § Apply the Finite Population Correction if: § a population

Finite Population Correction § § Apply the Finite Population Correction if: § a population member cannot be included more than once in a sample (sampling is without replacement), and § the sample is large relative to the population (n is greater than about 5% of N) Then or Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 23

Finite Population Correction § If the sample size n is not small compared to

Finite Population Correction § If the sample size n is not small compared to the population size N , then use Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 24

Sampling Distribution Properties Normal Population Distribution § (i. e. is unbiased ) Normal Sampling

Sampling Distribution Properties Normal Population Distribution § (i. e. is unbiased ) Normal Sampling Distribution (has the same mean) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 25

Sampling Distribution Properties (continued) § For sampling with replacement: As n increases, decreases Larger

Sampling Distribution Properties (continued) § For sampling with replacement: As n increases, decreases Larger sample size Smaller sample size Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 26

If the Population is not Normal § We can apply the Central Limit Theorem:

If the Population is not Normal § We can apply the Central Limit Theorem: § § Even if the population is not normal, …sample means from the population will be approximately normal as long as the sample size is large enough. Properties of the sampling distribution: and Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 27

Central Limit Theorem As the sample size gets large enough… n↑ Statistics for Business

Central Limit Theorem As the sample size gets large enough… n↑ Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. the sampling distribution becomes almost normal regardless of shape of population 28

If the Population is not Normal (continued) Sampling distribution properties: Population Distribution Central Tendency

If the Population is not Normal (continued) Sampling distribution properties: Population Distribution Central Tendency Variation Sampling Distribution (becomes normal as n increases) Smaller sample size Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Larger sample size 29

How Large is Large Enough? § § For most distributions, n > 25 will

How Large is Large Enough? § § For most distributions, n > 25 will give a sampling distribution that is nearly normal For normal population distributions, the sampling distribution of the mean is always normally distributed Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 30

Example § § Suppose a population has mean μ = 8 and standard deviation

Example § § Suppose a population has mean μ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected. What is the probability that the sample mean is between 7. 8 and 8. 2? Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 31

Example (continued) Solution: § § Even if the population is not normally distributed, the

Example (continued) Solution: § § Even if the population is not normally distributed, the central limit theorem can be used (n > 25) … so the sampling distribution of approximately normal § … with mean § …and standard deviation is = 8 Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 32

Example (continued) Solution (continued): Population Distribution ? ? ? Sampling Distribution Standard Normal Distribution

Example (continued) Solution (continued): Population Distribution ? ? ? Sampling Distribution Standard Normal Distribution Sample ? X . 1915 +. 1915 Standardize 7. 8 Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 8. 2 -0. 5 Z 33

Acceptance Intervals § Goal: determine a range within which sample means are likely to

Acceptance Intervals § Goal: determine a range within which sample means are likely to occur, given a population mean and variance § § § By the Central Limit Theorem, we know that the distribution of X is approximately normal if n is large enough, with mean μ and standard deviation Let zα/2 be the z-value that leaves area α/2 in the upper tail of the normal distribution (i. e. , the interval - zα/2 to zα/2 encloses probability 1 – α) Then is the interval that includes X with probability 1 – α Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 34

Sampling Distributions of Sample Proportions Sampling Distribution of Sample Mean Sampling Distribution of Sample

Sampling Distributions of Sample Proportions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Sampling Distribution of Sample Variance 35

Population Proportions, P P = the proportion of the population having some characteristic §

Population Proportions, P P = the proportion of the population having some characteristic § § § Sample proportion ( ) provides an estimate of P: 0≤ ≤ 1 has a binomial distribution, but can be approximated by a normal distribution when n. P(1 – P) > 9 Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 36

^ Sampling Distribution of P § Normal approximation: Sampling Distribution. 3. 2. 1 0

^ Sampling Distribution of P § Normal approximation: Sampling Distribution. 3. 2. 1 0 0 . 2 . 4 . 6 8 1 Properties: and (where P = population proportion) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 37

Z-Value for Proportions Standardize to a Z value with the formula: Statistics for Business

Z-Value for Proportions Standardize to a Z value with the formula: Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 38

Example § § If the true proportion of voters who support Proposition A is

Example § § If the true proportion of voters who support Proposition A is P =. 4, what is the probability that a sample of size 200 yields a sample proportion between. 40 and. 45? i. e. : if P =. 4 and n = 200, what is P(. 40 ≤ Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. ≤. 45) ? 39

Example (continued) if P =. 4 and n = 200, what is P(. 40

Example (continued) if P =. 4 and n = 200, what is P(. 40 ≤ ≤. 45) ? § Find : Convert to standard normal: Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 40

Example (continued) § if p =. 4 and n = 200, what is P(.

Example (continued) § if p =. 4 and n = 200, what is P(. 40 ≤ ≤. 45) ? Use standard normal table: P(0 ≤ Z ≤ 1. 44) =. 4251 Standardized Normal Distribution Sampling Distribution . 4251 Standardize . 40 . 45 Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 0 1. 44 Z 41

Sampling Distributions of Sample Proportions Sampling Distribution of Sample Mean Sampling Distribution of Sample

Sampling Distributions of Sample Proportions Sampling Distribution of Sample Mean Sampling Distribution of Sample Proportion Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. Sampling Distribution of Sample Variance 42

Sample Variance § § § Let x 1, x 2, . . . ,

Sample Variance § § § Let x 1, x 2, . . . , xn be a random sample from a population. The sample variance is the square root of the sample variance is called the sample standard deviation the sample variance is different for different random samples from the same population Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 43

Sampling Distribution of Sample Variances § The sampling distribution of s 2 has mean

Sampling Distribution of Sample Variances § The sampling distribution of s 2 has mean σ2 § If the population distribution is normal, then § If the population distribution is normal then has a 2 distribution with n – 1 degrees of freedom Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 44

The Chi-square Distribution § § The chi-square distribution is a family of distributions, depending

The Chi-square Distribution § § The chi-square distribution is a family of distributions, depending on degrees of freedom: d. f. = n – 1 0 4 8 12 16 20 24 28 d. f. = 1 § 2 0 4 8 12 16 20 24 28 d. f. = 5 2 0 4 8 12 16 20 24 28 2 d. f. = 15 Text Table 7 contains chi-square probabilities Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 45

Degrees of Freedom (df) Idea: Number of observations that are free to vary after

Degrees of Freedom (df) Idea: Number of observations that are free to vary after sample mean has been calculated Example: Suppose the mean of 3 numbers is 8. 0 Let X 1 = 7 Let X 2 = 8 What is X 3? If the mean of these three values is 8. 0, then X 3 must be 9 (i. e. , X 3 is not free to vary) Here, n = 3, so degrees of freedom = n – 1 = 3 – 1 = 2 (2 values can be any numbers, but the third is not free to vary for a given mean) Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 46

Chi-square Example § § § A commercial freezer must hold a selected temperature with

Chi-square Example § § § A commercial freezer must hold a selected temperature with little variation. Specifications call for a standard deviation of no more than 4 degrees (a variance of 16 degrees 2). A sample of 14 freezers is to be tested What is the upper limit (K) for the sample variance such that the probability of exceeding this limit, given that the population standard deviation is 4, is less than 0. 05? Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 47

Finding the Chi-square Value Is chi-square distributed with (n – 1) = 13 degrees

Finding the Chi-square Value Is chi-square distributed with (n – 1) = 13 degrees of freedom § Use the chi-square distribution with area 0. 05 in the upper tail: 213 = 22. 36 (α =. 05 and 14 – 1 = 13 d. f. ) probability α =. 05 2 213 = 22. 36 Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 48

Chi-square Example (continued) 213 = 22. 36 (α =. 05 and 14 – 1

Chi-square Example (continued) 213 = 22. 36 (α =. 05 and 14 – 1 = 13 d. f. ) So: or (where n = 14) so If s 2 from the sample of size n = 14 is greater than 27. 52, there is strong evidence to suggest the population variance exceeds 16. Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 49

Chapter Summary § Introduced sampling distributions § Described the sampling distribution of sample means

Chapter Summary § Introduced sampling distributions § Described the sampling distribution of sample means § § For normal populations § Using the Central Limit Theorem Described the sampling distribution of sample proportions § Introduced the chi-square distribution § Examined sampling distributions for sample variances § Calculated probabilities using sampling distributions Statistics for Business and Economics, 6 e © 2007 Pearson Education, Inc. 50