Statistics 200 b Chapter 5 Chapter 4 inference
Statistics 200 b. Chapter 5. Chapter 4: inference via likelihood now Chapter 5: applications to particular situations
annual max sea levels 1931 -81 Y: max cm x: year
5. 1 Straight-line regression. How one variable depends on others Response, Y, random Explanatories, x, fixed (covariates)
Reparametrize. Simplifies several things
Likelihood analysis.
Distributions. j : IN(0, 2 ) Linear combinations of normals
Venice sea level. n = 51
Prediction. at x+
Example.
annual max sea levels 1931 -81 Y: max cm x: year
(Raw) residuals.
Stat 200 b. Chapter 8. Linear regression models.
n by 1, n by 2, 2 by 1, n by 1
13 by 5
Effect of increasing seat height is 2 1
Some matrix review transpose multiplication inverse derivatives
Normal linear model. Estimation
Profile log likelihood
Straight-line/simple regression.
Fitted values. NB. Assuming matrix inverse exists
Weighted least squares. inverse existing
Example 8. 8. Cycling data
Example 8. 10. Maize data.
Likelihood quantities.
Take expected values
Normal distribution theory. Full rank case
A useful decomposition.
Confidence interval.
Gauss-Markov Theorem. page 374
There is a generalized inverse variant Example.
Eg. Teaching methods data, p. 427 Method average Usual 17 14 24 20 24 … 24 19. 67 Praised 28 30 29 24 27 … 23 27. 41 two-sample model / one-way layout
Robust/resistant estimators outlier - observation that is unusual compared to others resistant statistic - not strongly affected by outliers robust estimate - performs well under a range of potential models centered at an ideal model
13 by 5
ANOVA table
13 by 5
Model 1: y ~ 1 Model 2: y ~ x 1 Model 3: y ~ x 1 + x 2 Model 4: y ~ x 1 + x 2 + x 3 Model 5: y ~ x 1 + x 2 + x 3 + x 4 Res. Df RSS Df Sum of Sq F Pr(>F) 1 12 2715. 76 2 11 1265. 69 1 1450. 08 242. 3679 2. 888 e-07 *** 3 10 57. 90 1 1207. 78 201. 8705 5. 863 e-07 *** 4 9 48. 11 1 9. 79 1. 6370 0. 2366 5 8 47. 86 1 0. 25 0. 0413 0. 8441 Model 1: y ~ 1 Model 2: y ~ x 4 Model 3: y ~ x 4 + x 3 Model 4: y ~ x 4 + x 3 + x 2 Model 5: y ~ x 4 + x 3 + x 2 + x 1 Res. Df RSS Df Sum of Sq F Pr(>F) 1 12 2715. 76 2 11 883. 87 1 1831. 90 306. 1859 1. 161 e-07 *** 3 10 175. 74 1 4 9 73. 81 1 101. 92 17. 0356 0. 00331 ** 5 8 47. 86 1 25. 95 4. 3375 0. 07082 708. 13 118. 3577 4. 509 e-06 ***
- Slides: 62