STARDUST the fourth of NASAs Discoveryclass missions was
























































- Slides: 56
Компьютерная аэрофизика межпланетных спускаемых аппаратов STARDUST, the fourth of NASA’s Discovery-class missions, was launched on 7 February 1999. The spacecraft performed a close flyby of the comet Wild-2, coming within 149 km of the comet nucleus. The cometary's samples were collected by extending a collection tray on a boom into the gas/dust free stream emanating from the Comet, in which the particles were trapped in a material called aerogel. Atkins K. L. , Brownlee D. E. , Duxbury T. , Yen C. W. , Tsou P. , and Vollinga J. M. , “STARDUST: Discovery’s Inter. Stellar Dust and Cometary Sample Return Mission, ” 1997 IEEE Aerospace Conference, Vol. 4. , Inst. Of Electrical and Electronics Engineers, Piscataway, NJ, Feb. 1997. pp. 229 -245. Desai P. N. , Lyons D. T. , Tooley J. , Kangas J. , “Entry, Descent, and Landing Operations Analysis for the Stardust Entry Capsule, ” J. of Spacecraft and Rockets. 2008. Vol. 45. No. 6. pp. 1262 -1268. 10/7/2020 МФТИ: Международная научная школа - 2011 4
Компьютерная аэрофизика межпланетных спускаемых аппаратов STARDUST Upon Earth return on the morning of 15 January 2006, the entry capsule containing the cometary samples was released from the main spacecraft and descended through the Earth’s atmosphere, decelerating with the aid of a parachute for a successful landing at the U. S. Air Force’s Utah Test and Training in northwest Utah. STARDUST was the first mission to return samples from a comet. 10/7/2020 МФТИ: Международная научная школа - 2011 NASA 5
Компьютерная аэрофизика межпланетных спускаемых аппаратов The STARDUST Sample Return Capsule (SRC) entered the Earth’s atmosphere at velocity of 12. 6 km/s. This is the highest energy vehicle entry ever undertaken. 10/7/2020 МФТИ: Международная научная школа - 2011 6
Компьютерная аэрофизика межпланетных спускаемых аппаратов STARDUST T of the Sun, K STARDUST: Temperature distributions along forward stagnation line at t=42 s. 10/7/2020 МФТИ: Международная научная школа - 2011 7
Компьютерная аэрофизика межпланетных спускаемых аппаратов Some definitions from the physics of meteoroids • Meteoroid – Is the solid object moving in interplanetary space. It has a size considerably smaller than an asteroid and considerably larger than an atom. • A meteoroid can be characterized by sizes of ~ 0. 1 mm and ~ 10 m. • Meteor – Is the visible path of a meteoroid that has entered the Earth’s atmosphere. • Bolide – Is the exceptionally bright meteor (or fireball generated at its flash) 10/7/2020 МФТИ: Международная научная школа - 2011 11
Spectral Signature of a Bolide Flow fields around meteoroid were calculated for four velocities 10 km/s, 20 km/s, 30 km/s, 40 km/s at altitude 70 km. 10/7/2020 Height 0. 700 E+05 m Temperature 0. 220 E+03 K Pressure 0. 522 E+02 erg/cm**3 Pressure 0. 392 E-01 Torr Density 0. 828 E-07 g/cm**3 Sound Velocity 0. 297 E+05 cm/s Viscosity 0. 144 E-03 g/(cm*s) Heat Conductivity 0. 198 E-05 W/(cm*K) Particle Numbers 0. 172 E+16 1/cm**3 Mach nummber 0. 290 E+02 g/mole Frequency of Collision 0. 408 E+06 1/s Free Path 0. 981 E-01 cm МФТИ: Международная научная школа - 2011 13
Spectral Signature of a Bolide 10/7/2020 МФТИ: Международная научная школа - 2011 14
Spectral Signature of a Bolide Tvib(N 2) Ttr V∞=40 km/s, h=70 km 10/7/2020 Tvib(O 2) МФТИ: Международная научная школа - 2011 15
Spectral Signature of a Bolide N 2 V∞ V∞=40 km/s, h=70 km 10/7/2020 O 2 МФТИ: Международная научная школа - 2011 16
Spectral Signature of a Bolide N Pressure V∞=40 km/s, h=70 km 10/7/2020 O МФТИ: Международная научная школа - 2011 17
Spectral Signature of a Bolide N+ E- V∞=10 km/s, h=70 km 10/7/2020 O+ МФТИ: Международная научная школа - 2011 18
Spectral Signature of a Bolide V∞=10 km/s, 30 km/s, 40 km/s 10/7/2020 МФТИ: Международная научная школа - 2011 19
Global mosaic of 102 Viking 1 Orbiter images of Mars taken on orbit 1, 334, 22 February 1980. The images are projected into point perspective, representing what a viewer would see from a spacecraft at an altitude of 2, 500 km. At center is Valles Marineris, over 3000 km long and up to 8 km deep. Note the channels running up (north) from the central and eastern portions of Valles Marineris to the dark area, Acidalic Planitia, at upper right. At left are three Tharsis volcanoes and to the south is ancient, heavily impacted terrain. (Viking 1 Orbiter, MG 07 S 078 -334 SP) 10/7/2020 МФТИ: Международная научная школа - 2011 23
Марс Project NASA: Mars Exploration Rover 10/7/2020 МФТИ: Международная научная школа - 2011 27
Spectral Signature of a Bolide Verification scheme of NERAT-ASTEROID codes Code Verification Chemical kinetics CFD codes Grids & Calc. Domains Data Base Of Chem. React. Velocities Physical kinetics Vibrational & Electronic Kinetics RHT codes Optical models LTE approach Averaged on Rotational Structure Spectrum Non LTE approach Line-by-line models Gas Phase Laminar & Turbulent Transport Properties Surface Kinetics 1 D, 2 D, 3 D problems 10/7/2020 Thermo destruction kinetics МФТИ: Международная научная школа - 2011 47
Компьютерная аэрофизика межпланетных спускаемых аппаратов Летный эксперимент Fire-II Non Equilibrium LTE Time (sec) Altitude (km) Velocity (km/s) Density (kg/m 3) T 1634 76. 42 11. 36 3. 72 10 -5 195 1637. 5 67. 05 11. 25 1. 47 10 -4 228 1640. 5 59. 26 10. 97 3. 86 10 -4 254 1643. 53. 04 10. 48 7. 8 10 -4 276 1645 48. 37 9. 83 1. 32 10 -3 285 (K) 1 Olynick, D. R. , Henline, W. D. , Chambers, L. H. , Candler, G. V. , “Comparison of Coupled Radiative Navier-Stokes Flow Solutions with the Project Fire-II Flight Data, ” AIAA 94 -1955, 1995, 15 p. 10/7/2020 МФТИ: Международная научная школа - 2011 48
Компьютерная аэрофизика межпланетных спускаемых аппаратов Fire-II 1 Olynick, D. R. , Henline, W. D. , Chambers, L. H. , Candler, G. V. , “Comparison of Coupled Radiative Navier-Stokes Flow Solutions with the Project Fire-II Flight Data, ” AIAA 94 -1955, 1995, 15 p. 10/7/2020 МФТИ: Международная научная школа - 2011 49
Компьютерная аэрофизика межпланетных спускаемых аппаратов Experimental Research in Superorbital Expansion Tube Mc. Intyre T. J. , Gnoffo P. et al. Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder. AIAA Journal, 2003, Vo. 41, No. 11 10/7/2020 МФТИ: Международная научная школа - 2011 53
Компьютерная аэрофизика межпланетных спускаемых аппаратов Experimental Research in Superorbital Expansion Tube Mc. Intyre T. J. , Gnoffo P. et al. Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder. AIAA Journal, 2003, Vo. 41, No. 11 10/7/2020 МФТИ: Международная научная школа - 2011 54
Компьютерная аэрофизика межпланетных спускаемых аппаратов Experimental Research in Superorbital Expansion Tube Mc. Intyre T. J. , Gnoffo P. et al. Comparison of Experimental and Numerical Studies of Ionizing Flow over a Cylinder. AIAA Journal, 2003, Vo. 41, No. 11 10/7/2020 МФТИ: Международная научная школа - 2011 55