Standard Model Higgs searches with the CMS detector

  • Slides: 20
Download presentation
Standard Model Higgs searches with the CMS detector C. Rovelli (INFN Roma 1) on

Standard Model Higgs searches with the CMS detector C. Rovelli (INFN Roma 1) on behalf of the CMS Collaboration EPS, Manchester – July 19 th – 25 th

The CMS experiment e/g energy and position measurement jets and missing energy reconstruction ECAL

The CMS experiment e/g energy and position measurement jets and missing energy reconstruction ECAL will be ready according to new LHC schedule more details in `Detectors and Data Handling’ session tracks momentum measurement and vertex identification muon tracks reconstruction and momentum measurement 2

SM Higgs mass constraints triviality bound vacuum stability theoretical limits: finite and positive Higgs

SM Higgs mass constraints triviality bound vacuum stability theoretical limits: finite and positive Higgs couplings experimental limits: Phys. Lett. B 565 (2003) 61 direct (from LEP): m. H > 114. 4 Ge. V/c 2 indirect (from EW data): m. H < 144 Ge. V/c 2 @ 95% CL LEP EW WG 2 home page m. H < 182 Ge. V/c including LEP results (using latest measurement of mtop= 170. 9 Ge. V/c 2) } 3

SM Higgs production at LHC gluon-gluon fusion: dominant process over entire mass range vector

SM Higgs production at LHC gluon-gluon fusion: dominant process over entire mass range vector bosons fusion (VBF): forward jets in final state associated production with quarks or bosons: additional leptons or jets in final state 4

SM Higgs decays m. H<140 Ge. V/c 2 bb dominates but hidden by QCD

SM Higgs decays m. H<140 Ge. V/c 2 bb dominates but hidden by QCD background, H→gg main discovery channel m. H>140 Ge. V/c 2 H → VV dominates H → WW main channel if 2 m. W<m. H<2 m. Z 5

H→gg very clean signature in m. H<140 Ge. V/c 2 region low branching ratio

H→gg very clean signature in m. H<140 Ge. V/c 2 region low branching ratio (0. 002) signal: m. H = 115 Ge. V/c 2 m. H = 140 Ge. V/c 2 backgrounds: pp → gg pp → g +jets pp → jets q signature: σx. BR = 99. 3 fb σx. BR = 65. 5 fb σ = 82 pb σ = 5 x 104 pb σ = 2. 8 x 107 pb two isolated high p. T photons narrow peak in di-photon invariant mass q backgrounds: pp→gg (irreducible) pp→ g+jets, pp→jets (reducible) q experimental requirements: very good g identification and isolation aiming at 0. 5% ECAL energy resolution photons (clusters in ECAL) 6

H→gg: results two approaches: cuts based analysis and neural network analysis signal: very small

H→gg: results two approaches: cuts based analysis and neural network analysis signal: very small contribution to the total number of events (signal efficiency at 120 Ge. V/c 2 ~ 30%) 30 fb-1: discovery possible for masses < 140 Ge. V/c 2 using 0. 5% resolution background events normalized to 1 fb-1 signalx 10 7

H→ZZ→ 4 charged leptons GOLDEN CHANNEL: cleanest discovery channel over m H>140 Ge. V/c

H→ZZ→ 4 charged leptons GOLDEN CHANNEL: cleanest discovery channel over m H>140 Ge. V/c 2 range 2 e 2μ final state q signature: q 2 pairs of opposite-charge, same flavour 1 fb-1 isolated leptons q from primary vertex q dileptons invariant mass ~ m. Z before selections (*) q backgrounds: pp → ZZ (irreducible, dominant) pp→tt, pp→Zbb (reducible) q main experimental challenges: lepton identification with high efficiency and resolution down to low (~ 5 Ge. V/c) p. T after cuts selections 1 fb-1 selection criteria: requirements on vertex, p. T(l), isolation, m(ll) 8

H→ZZ→ 4 charged leptons: significance 4 e, 2 e 2μ, 4μ combined channels 5σ

H→ZZ→ 4 charged leptons: significance 4 e, 2 e 2μ, 4μ combined channels 5σ with L < 20 fb-1, 130< m. H<600 Ge. V/c 2 5σ with L < 3 fb-1, m. H ~ 200 Ge. V/c 2 9

H→WW→ 2 l 2 n discovery channel in 2 m. W < m. H

H→WW→ 2 l 2 n discovery channel in 2 m. W < m. H < 2 m. Z q signature: q 2 charged leptons and missing energy q no jet activity in the central region 2 neutrinos in the final state: no mass peak, counting experiments → accurate background estimate from data needed q main backgrounds: WW(*) (irreducible, dominant) pp→ tt, pp→ Wtb pp→ W+jets, pp→ Z+jets crucial for the analysis: reconstruction tools for charged leptons, missing energy and jet veto understanding !!! } (reducible) 2 opposite charge leptons no jet with ET > 15 Ge. V, |η|<2. 5 MET > 50 Ge. V 12 < m(ll) < 40 Ge. V 30 < p. Tmax < 55 Ge. V p. Tmin > 25 Ge. V cuts and counts ΔΦ(ll) < 45º analysis 10

H→WW→ 2 l 2 n: results WW control region, no ΔΦ(ll) cut 10 fb-1,

H→WW→ 2 l 2 n: results WW control region, no ΔΦ(ll) cut 10 fb-1, em critical: precise background knowledge → control regions using data ie. WW: inverted kinematic cuts on ΔΦ(ll) and m(ll) ie. tt: extra b-tagged jets large S/B, 5σ with L<1 fb-1 m. H=165 Ge. V/c 2 11

Other Higgs production mechanisms associated tt. H, WH production: additional leptons/jets in the final

Other Higgs production mechanisms associated tt. H, WH production: additional leptons/jets in the final state vector boson fusion: two tagging jets, large Δηjj (>4. 5), large m(jj) (>1 Te. V) q despite lower cross section wrt gg fusion § increased discriminating power against QCD jets background § better main vertex reconstruction q with large statistics: enhance the significance, measure of Higgs couplings q some examples in CMS: q VBF with H→tt →l+tjet+ ETmiss q VBF with H→gg q tt. H, WH with H→gg VBF with H→tt → l+tjet+ ETmiss (5σ with L=60 fb-1 if m. H<140 Ge. V/c 2) (3σ with L=60 fb-1 if m. H<150 Ge. V/c 2) (3σ with L=100 fb-1 if m. H<150 Ge. V/c 2) tt. H with H→gg 12

Analyses common aspects n n Event generation and simulation: ¨ NLO, NNLO: K factors

Analyses common aspects n n Event generation and simulation: ¨ NLO, NNLO: K factors for σ and events re-weighting ¨ MC used: PYTHIA, Comp. HEP, Alpgen, Top. Re. X, MC@NLO. . ¨ full detector simulation and reconstruction uncertainties taken into account: ¨ theoretical: n ¨ experimental: n n n ¨ pdf, N(N)LO corrections, factorization/renormalization scale lepton reconstruction efficiency and energy scale jets/MET scale misalineament, miscalibration, geometry description (ie. tracker material budget) data driven estimate n n background shape and cross-section in signal region leptons energy scale (via Z, W -> ll) recently published analyses (CMS Physics TDR, vol II: http: //cmsdoc. cern. ch/cms/cpt/tdr) 13

Summary of SM Higgs discovery 5 fb-1 enough 140<m. H<450 Ge. V/c 2 discovery

Summary of SM Higgs discovery 5 fb-1 enough 140<m. H<450 Ge. V/c 2 discovery with 30 fb-1 in the full range all Higgs mass range: significance larger than 5σ with 30 fb-1 m. H < 140 Ge. V/c 2 discovery with L < 10 fb-1 m. H > 140 Ge. V/c 2 discovery with L < 5 fb-1 14

Higgs mass and width q Higgs mass precision: §better than 0. 1% if m.

Higgs mass and width q Higgs mass precision: §better than 0. 1% if m. H<200 Ge. V/c 2 §better than 2% up to 600 Ge. V/c 2 q Higgs width precision: § detector effects dominate if m. H < 200 Ge. V/c 2 § if m. H > 200 Ge. V/c 2 possible measurement with precision better 30% in ZZ channel 15

Summary n CMS discovery potential for the SM Higgs boson recently evaluated with full

Summary n CMS discovery potential for the SM Higgs boson recently evaluated with full detector simulation n inclusion/development of ¨ ¨ ¨ n systematics errors, both theoretical and experimental background estimate procedures using data NLO computation CMS discovery reach ¨ L < 10 fb-1 in the H→gg channel @ 120 Ge. V/c 2 ¨ L < 3 fb-1 in the H → ZZ channel @ 180 Ge. V/c 2 ¨ L < 1 fb-1 in the H → WW channel @ 165 Ge. V/c 2 n significance > 5σ with L = 30 fb-1 in 120 Ge. V/c 2 < m. H < 600 Ge. V/c 2 range n Higgs mass precision better than ¨ ¨ 0. 1% if m. H < 200 Ge. V/c 2 2% up to 600 Ge. V/c 2 16

BACKUP SLIDES 17

BACKUP SLIDES 17

VBF and associated production, H->γγ WH, H → γγ L = 1034 cm-2 s-1

VBF and associated production, H->γγ WH, H → γγ L = 1034 cm-2 s-1 tt. H, H → γγ 100 fb-1 m. H < 150 Ge. V/c 2 3σ → 100 fb-1 additional jets and isolated leptons: ü larger discrimination power against light QCD background ü better vertex reconstruction m. H < 150 Ge. V/c 2 3σ → 60 fb-1 L = 2 x 1033 cm-2 s-1 18

ttbar H, H→bbar all the possible final states have been investigated: semileptonic, fully hadronic,

ttbar H, H→bbar all the possible final states have been investigated: semileptonic, fully hadronic, fully leptonic main backgrounds: ttbarjj, ttbar bbar, Z ttbar with Z →bbar QCD multi-jets bkg for hadronic final states W, Z + jets for leptonic final states main goals: b-jet tagging + extract the “correct” b-jets from the combinatorics channel S/B S/√B+d. B 2 semileptonic, μ semileptonic, e dilepton hadron 0. 108 2. 0 0. 086 1. 5 0. 069 1. 4 0. 087 2. 0 0. 44 0. 37 0. 42 0. 22 full simulation analysis: H → bbar lost as discovery channel also with 60 fb-1 19

VBF with H→tt →l+tjet+ ETmiss VBF: two tagging jets (Δηjj>4. 5, Mjj>1 Te. V)

VBF with H→tt →l+tjet+ ETmiss VBF: two tagging jets (Δηjj>4. 5, Mjj>1 Te. V) which increase the discriminating power with respect to jet backgrounds main backgrounds: QCD 2 t + 2 or 3 jets EW 2 t + 2 jets W+jets, ttbar higgs mass resolution = 9. 1% 5σ with L=60 fb-1 If m. H<140 Ge. V/c 2 20