SPS dose forecast foreseen safety installations Update following

  • Slides: 33
Download presentation
SPS dose forecast foreseen safety installations Update following MC WG 17. 10. 2016 Elisa

SPS dose forecast foreseen safety installations Update following MC WG 17. 10. 2016 Elisa Guillermain elisa. guillermain@cern. ch

Outputs from last MC WG meeting • See slides on https: //indico. cern. ch/event/577094/

Outputs from last MC WG meeting • See slides on https: //indico. cern. ch/event/577094/ • Scaling with distance • Factor 10 agreed • Scaling with time • What will influence the dose has been identified • Main contributions are SHIP, new collimator. • How this will influence the dose is not yet known ! Ø Conservative scaling = considering each years will be the same in terms of dose depending on the location in the tunnel… • Data 2014 + 2015 used so far • MC WG asked for same analysis without 2014 BLM data • MC WG asked for same analysis with 2011 + 2012 data MC WG - 07. 11. 2016 2

BLM and RPL in SPS ring Cable tray RPL position 08 BLM position 08

BLM and RPL in SPS ring Cable tray RPL position 08 BLM position 08 Beam line RPL position 20 • BLM data is yearly • RPL data is for two years • For example 2011 + 2012; 2014 + 2015 MC WG - 07. 11. 2016 3

SPS Tunnel cross section Installation zone of foreseen systems ≈ 150 cm SPS beam

SPS Tunnel cross section Installation zone of foreseen systems ≈ 150 cm SPS beam line m 5 c ≈ 17 ≈ 100 cm Still open questions • Is this the same decrease factor in the ARCs and in the LSSs ? • For both the transport side wall and the ceiling ? ≈ 30 cm Tray RPL Coil RPL And BLM Decrease factor at the transport wall and at the ceiling considered to be the same Ø Factor 10 MC WG - 07. 11. 2016 4

SPS Geometry • SPS geometry • 6 sextants of 1152 m • With 36

SPS Geometry • SPS geometry • 6 sextants of 1152 m • With 36 periods of 32 meters • Periods divided in 100 elements numbers • 6910 meters in total • BLM positions given in sextant, period, element • Idem for RPL • Transformed in meters for plotting • See histogram below • Error lower than +/- 7 meters, except for 11 locations (up to -29 m and +67 meters) LSS 1 Beam dump Injection from PS with TT 10 LSS 2 Extraction to North area with TT 20 LSS 3 LSS 4 Extraction to LHC or CNGS / AWAKE with TT 40 LSS 5 LSS 6 Extraction to LHC or Hi. Rad. Mat with TT 60 MC WG - 07. 11. 2016 5

SPS Schedule • LS 1 : SPS shut down from Feb. 2013 up to

SPS Schedule • LS 1 : SPS shut down from Feb. 2013 up to Feb. 2014 • During LS 1, some SPS elements were changed or moved, leading to a modification of the machine performance (beam optics modified), etc… • After LS 1, BE-OP tuned the magnets, leading to a different beam optics than before LS 1. • Advices from last MC WG: • Best to use only 2015 data since Year 2014 was not yet fully optimized (first months after LS 1). Ø Exclusion of 2014 BLM data (not possible for RPL…) Ø Use of 2015 data for BLM and (2014+2015)/2 for RPL. • Doses in 2014 +2015 were lower than before LS 1 Ø In 2011 + 2012 the CNGS experiment was running and responsible for a non -negligible part of the SPS dose. Ø Advice using 2011 + 2012, probably the most representative, and possibly data for worst case conditions. MC WG - 07. 11. 2016 6

SPS in 2014 – 2015 As shown during 18. 10. 2016 MC WG -

SPS in 2014 – 2015 As shown during 18. 10. 2016 MC WG - 07. 11. 2016 7

Yearly doses as recorded by BLM and RPL in both 2014 + 2015 MC

Yearly doses as recorded by BLM and RPL in both 2014 + 2015 MC WG - 07. 11. 2016 8

Yearly doses recorded in both 2014 + 2015 and divided by 10 for distance

Yearly doses recorded in both 2014 + 2015 and divided by 10 for distance MC WG - 07. 11. 2016 9

SPS in 2015 But RPL data cannot be 2015 only ! ØCompared to 2014

SPS in 2015 But RPL data cannot be 2015 only ! ØCompared to 2014 + 2015 data, BLM 2014 data is removed… MC WG - 07. 11. 2016 10

Yearly doses as recorded by BLM in 2015 and by RPL in both 2014

Yearly doses as recorded by BLM in 2015 and by RPL in both 2014 + 2015 MC WG - 07. 11. 2016 11

Yearly doses recorded by BLM in 2015 and by RPL in both 2014 +

Yearly doses recorded by BLM in 2015 and by RPL in both 2014 + 2015 and divided by 10 for distance MC WG - 07. 11. 2016 12

Comparison of 2014 + 2015 data with RPL 2014 + 2015 and BLM 2015

Comparison of 2014 + 2015 data with RPL 2014 + 2015 and BLM 2015 Max increase factor is of 1. 85 MC WG - 07. 11. 2016 13

SPS in 2011 – 2012 (In 2013, SPS stopped in Feb…) MC WG -

SPS in 2011 – 2012 (In 2013, SPS stopped in Feb…) MC WG - 07. 11. 2016 14

Yearly doses as recorded by BLM and RPL in both 2011 + 2012 MC

Yearly doses as recorded by BLM and RPL in both 2011 + 2012 MC WG - 07. 11. 2016 15

Yearly doses recorded in both 2011 + 2012 and divided by 10 for distance

Yearly doses recorded in both 2011 + 2012 and divided by 10 for distance MC WG - 07. 11. 2016 16

Comparison of 2014 + 2015 data with 2011 + 2012 data Max increase factor

Comparison of 2014 + 2015 data with 2011 + 2012 data Max increase factor is of 30 MC WG - 07. 11. 2016 17

The future MC WG - 07. 11. 2016 18

The future MC WG - 07. 11. 2016 18

Possible options • Rough scaling • But then we do not know what is

Possible options • Rough scaling • But then we do not know what is the dose in specific areas • How to asses the functioning in each zone ? • Assess what will influence the dose • Influences were spotted (intensity increase (LINAC 4 and HL-LHC), SHIP, new collimator)(CRAB not an issue…) • Increase factors are not know ! • Increase in intensity is unknown • Influence of modification / upgrade of the machine on the dose is unknown • Need a crystal ball for predicting the future? • Do a linear scaling from the yearly doses… • Done with 2014+2015 data • Now with 2011+2012 data • Will need to get back on these and check variability across the years ! MC WG - 07. 11. 2016 19

At beam – From 2011+2012 data MC WG - 07. 11. 2016 20

At beam – From 2011+2012 data MC WG - 07. 11. 2016 20

At beam – From 2014+2015 data MC WG - 07. 11. 2016 21

At beam – From 2014+2015 data MC WG - 07. 11. 2016 21

At wall – From 2011+2012 data MC WG - 07. 11. 2016 22

At wall – From 2011+2012 data MC WG - 07. 11. 2016 22

At wall – From 2014+2015 data MC WG - 07. 11. 2016 23

At wall – From 2014+2015 data MC WG - 07. 11. 2016 23

Will be future be like 2011+2012 ? Or like 2014+2015 ? Or…? MC WG

Will be future be like 2011+2012 ? Or like 2014+2015 ? Or…? MC WG - 07. 11. 2016 24

Estimated accumulated doses From data 2014+2015, at transport wall Area Dose / year 2014

Estimated accumulated doses From data 2014+2015, at transport wall Area Dose / year 2014 5 years / 2015 dose 10 years dose 20 years dose 40 years dose Arcs Below 200 Gy 800 Gy in Arc 1+ 1 k. Gy 4 k. Gy 2 k. Gy 8 k. Gy 4 k. Gy 16 k. Gy 8 k. Gy 32 k. Gy LSS 1 10 k. Gy 50 k. Gy 100 k. Gy 200 k. Gy 400 k. Gy LSS 2 55 k. Gy 275 k. Gy 550 k. Gy 1, 1 MGy 2, 2 MGy LSS 3 300 Gy 1, 5 k. Gy 3 k. Gy 6 k. Gy 12 k. Gy LSS 4 125 Gy 625 Gy 1, 25 k. Gy 2, 5 k. Gy LSS 5 350 Gy 1, 75 k. Gy 3, 5 k. Gy 7 k. Gy 14 k. Gy LSS 6 55 Gy 275 Gy 1, 1 k. Gy 2, 2 k. Gy 550 Gy In Sextant 4 and Sextant 6, the accumulated dose is higher in the Arc+ than in the LSS MC WG - 07. 11. 2016 25

Estimated accumulated doses From data 2014+2015, excluding BLM 2014, at transport wall Area Dose

Estimated accumulated doses From data 2014+2015, excluding BLM 2014, at transport wall Area Dose / year 2014 5 years / 2015 dose 10 years dose 20 years dose 40 years dose Arcs Below 200 Gy 800 Gy in Arc 1+ 300 Gy in Arc 2 - 1 k. Gy 4 k. Gy 1, 5 k. Gy 2 k. Gy 8 k. Gy 3 k. Gy 4 k. Gy 16 k. Gy 8 k. Gy 32 k. Gy 12 k. Gy LSS 1 10 k. Gy 50 k. Gy 100 k. Gy 200 k. Gy 400 k. Gy LSS 2 100 k. Gy 500 k. Gy 1 MGy 2 MGy 4 MGy LSS 3 300 Gy 1, 5 k. Gy 3 k. Gy 6 k. Gy 12 k. Gy LSS 4 125 Gy 625 Gy 1, 25 k. Gy 2, 5 k. Gy LSS 5 350 Gy 1, 75 k. Gy 3, 5 k. Gy 7 k. Gy 14 k. Gy LSS 6 55 Gy 275 Gy 1, 1 k. Gy 2, 2 k. Gy 550 Gy MC WG - 07. 11. 2016 26

Estimated accumulated doses From data 2011+2012, at transport wall Area Dose / year 2011

Estimated accumulated doses From data 2011+2012, at transport wall Area Dose / year 2011 / 2012 5 years dose 10 years dose 20 years 40 years dose Arc 3+ 2, 5 k. Gy 12, 5 k. Gy 25 k. Gy 50 k. Gy 100 k. Gy Arc 1+ 1, 75 k. Gy 8, 75 k. Gy 17, 5 k. Gy 35 k. Gy 70 k. Gy Arc 2+ and Arc 4+ 1 k. Gy 5 k. Gy 10 k. Gy 20 k. Gy 40 k. Gy Other Arcs Below 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy LSS 1 100 k. Gy 500 k. Gy 1 MGy 2 MGy 4 MGy LSS 2 250 k. Gy 1, 25 MGy 2, 5 MGy 10 MGy LSS 3 100 Gy 500 Gy 1 k. Gy 2 k. Gy 4 k. Gy LSS 4 3 k. Gy 15 k. Gy 30 k. Gy 60 k. Gy 120 k. Gy LSS 5 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy LSS 6 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy In Sextant 3, the accumulated dose is higher in the Arc+ than in the LSS Vs 2, 2 MGy with the 2014 -2015 data… MC WG - 07. 11. 2016 27

Comparison of 2011+2012 and 2014+2015 MC WG - 07. 11. 2016 28

Comparison of 2011+2012 and 2014+2015 MC WG - 07. 11. 2016 28

Proposal for irradiation test dose steps 2014+2015 data, divided by 10 for distance Area

Proposal for irradiation test dose steps 2014+2015 data, divided by 10 for distance Area Dose / year 2014 / 2015 5 years dose 10 years dose 20 years dose 40 years dose Arcs Below 200 Gy 800 Gy in Arc 1+ 1 k. Gy 4 k. Gy 2 k. Gy 8 k. Gy 4 k. Gy 16 k. Gy 8 k. Gy 32 k. Gy LSS 1 10 k. Gy 50 k. Gy 100 k. Gy 200 k. Gy 400 k. Gy LSS 2 55 k. Gy 275 k. Gy 550 k. Gy 1, 1 MGy 2, 2 MGy LSS 3 300 Gy 1, 5 k. Gy 3 k. Gy 6 k. Gy 12 k. Gy LSS 4 125 Gy 625 Gy 1, 25 k. Gy 2, 5 k. Gy LSS 5 350 Gy 1, 75 k. Gy 3, 5 k. Gy 7 k. Gy 14 k. Gy LSS 6 175 Gy 875 Gy 1, 75 k. Gy 3, 5 k. Gy 7 k. Gy 2 k. Gy, 10 k. Gy, 500 k. Gy, 1 MGy, 3 MGy MC WG - 07. 11. 2016 29

Proposal for irradiation test dose steps 2011+2012 data, divided by 10 for distance Area

Proposal for irradiation test dose steps 2011+2012 data, divided by 10 for distance Area Dose / year 2011 / 2012 5 years dose 10 years dose 20 years 40 years dose Arc 3+ 2, 5 k. Gy 12, 5 k. Gy 25 k. Gy 50 k. Gy 100 k. Gy Arc 1+ 1, 75 k. Gy 8, 75 k. Gy 17, 5 k. Gy 35 k. Gy 70 k. Gy Arc 2+ and Arc 4+ 1 k. Gy 5 k. Gy 10 k. Gy 20 k. Gy 40 k. Gy Other Arcs Below 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy LSS 1 100 k. Gy 500 k. Gy 1 MGy 2 MGy 4 MGy LSS 2 250 k. Gy 1, 25 MGy 2, 5 MGy 10 MGy LSS 3 100 Gy 500 Gy 1 k. Gy 2 k. Gy 4 k. Gy LSS 4 3 k. Gy 15 k. Gy 30 k. Gy 60 k. Gy 120 k. Gy LSS 5 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy LSS 6 500 Gy 2, 5 k. Gy 10 k. Gy 20 k. Gy 5 k. Gy, 25 k. Gy, 150 k. Gy, 500 k. Gy, 2 MGy, 5 MGy, 10 MGy MC WG - 07. 11. 2016 30

Consequences of each proposal • From 2014 / 2015 data • 2 k. Gy,

Consequences of each proposal • From 2014 / 2015 data • 2 k. Gy, 10 k. Gy, 500 k. Gy, 1 MGy, 3 MGy • @ 10 k. Gy/h (BGS pallet) • Irradiation time is 15 days • Cost is about 20’ 000 € for 1 pallet • From 2011 / 2012 data • 5 k. Gy, 50 k. Gy, 200 k. Gy, 500 k. Gy, 2 MGy, 5 MGy, 10 MGy • @ 10 k. Gy/h (BGS pallet) • Irradiation time is 45 days • Cost is about 50’ 000 € for 1 pallet MC WG - 07. 11. 2016 31

Still open questions • Radiation levels in the TAs, at both levels ? •

Still open questions • Radiation levels in the TAs, at both levels ? • Installation of Rad. Fets or Bat. Mons in TA 2 ? • Will require at least one year of integration ! • In PA 6 for Crab cavities : 1 Gy/year • Radiation levels in the shafts • Fabrice Malacrida contacted -> Not suitable ! • Possibility of installing Rad. Fets ? • Fire doors positions • Shall get back when the exact position is defined • Or give inputs so that the doors are not placed at worst positions • Some LSS limits seems to accumulated quite high radiation levels ! MC WG - 07. 11. 2016 32

Thanks for your attention !

Thanks for your attention !