SOME RESULTS IN GRAPH THEORY 1 A graph

  • Slides: 34
Download presentation
SOME RESULTS IN GRAPH THEORY 1 ) A graph is any connection of points,

SOME RESULTS IN GRAPH THEORY 1 ) A graph is any connection of points, some pairs of which are connected by lines. A B C D E F G H Figure A Figure B 2 ) If a graph has p points and q lines, it is called a (p, q) graph. points process and utility streams lines heat exchangers 3 ) A path is a sequence of distinct lines, each are starting where the previous are ends, e. g. AECGD in Fig. A.

SOME RESULTS IN GRAPH THEORY 4 ) A graph is connected if any two

SOME RESULTS IN GRAPH THEORY 4 ) A graph is connected if any two points can be joined by a path, e. g. Fig. A 5 ) Points which are connected to some fired point by paths are said to form a component, e. g. Fig A has one component. Fig B has two components. 6 ) A cycle is a path which begins and ends at the same point, e. g. CGDHC in Fig. A. 7 ) The maximum number of independent cycles is called the cycle rank of the graph. 8 ) The cycle rank of a (p, q) graph with k components is q-p+k

A Result Based on Graph Theory U = N+L-S Where, N = the total

A Result Based on Graph Theory U = N+L-S Where, N = the total number of process and utility streams L = the number of independent loops S = the number of separate component in a network U = the number of heat exchanger services

U = N+L-S 30 ST 30 70 H 1 90 H 2 60 40

U = N+L-S 30 ST 30 70 H 1 90 H 2 60 40 50 10 C 1 40 30 ST C 2 100 70 H 1 30 C 1 40 30 ST 30 -X C 1 40 70 CW 50 90 H 2 40 C 2 100 70 H 1 X 10+X 60 -X C 2 100 50 CW 50 90 H 2 40 50 CW 50 U = N-1 =5 U = N-2 =4 U = N+1 -1 =N =6

CAPITAL TARGET Umin = N - 1 where, Umin = the minimum number of

CAPITAL TARGET Umin = N - 1 where, Umin = the minimum number of services N = the total number of process and utility streams Note, U=N+L-S

§ PINCH DESIGN METHOD RULE 1: THE “TICK-OFF” HEURISTIC UMIN = N-1 - THE

§ PINCH DESIGN METHOD RULE 1: THE “TICK-OFF” HEURISTIC UMIN = N-1 - THE EQUATION IS SATISFIED IF EVERY MATCH BRINGS ONE STREAM TO ITS TARGET TEMPERATURE OR EXHAUSTS A UTILITY. - FEASIBILITY CONSTRAINTS : ENERGY BALANCE TMIN

Example 1 Stream No and Type TS ( F) TF ( F) CP 104

Example 1 Stream No and Type TS ( F) TF ( F) CP 104 BTU/hr F Heat Load Q BTU/hr (1) Cold 200 400 1. 6 320. 0 (2) Cold 100 430 1. 6 528. 0 (3) Hot 590 400 2. 376 451. 4 (4) Cold 300 4. 128 412. 8 (5) Hot 471 200 1. 577 427. 4 (6) Cold 150 280 2. 624 341. 1 (7) Hot 533 150 1. 32 505. 6 Tmin = 20 F Qhmin = 217. 5 104 BTU/hr Qcmin = 0

Hot streams 3 5 7 590 2. 376 451. 4 1. 557 427. 4

Hot streams 3 5 7 590 2. 376 451. 4 1. 557 427. 4 1. 32 505. 6 1 1. 6 320. 0 2 1. 6 528. 0 4 4. 128 412. 8 6 2. 624 341. 1 200 533 400 150 200 416 505. 6 400 280 Q 400 471 419 430 CP 341. 1 Cold streams 100 300 150

3 5 590 574 Q 2. 376 451. 4 1. 557 86. 3 1

3 5 590 574 Q 2. 376 451. 4 1. 557 86. 3 1 1. 6 320. 0 2 1. 6 22. 4 4 4. 128 412. 8 400 471 400 254 86. 3 430 400 CP 412. 8 419 200 416 300

3 590 583 400 264 H 217. 5 16. 2 430 Q 2. 376

3 590 583 400 264 H 217. 5 16. 2 430 Q 2. 376 38. 6 1 1. 6 233. 7 2 1. 6 22. 4 574 254 22. 4 CP 416

3 5 7 590 471 533 400 16. 2 217. 5 430 400 280

3 5 7 590 471 533 400 16. 2 217. 5 430 400 280 Q 400 2. 376 451. 4 200 1. 557 427. 4 1. 32 505. 6 1 1. 6 320. 0 2 1. 6 528. 0 4 4. 128 412. 8 6 2. 624 341. 1 150 200 H CP 86. 3 22. 4 100 505. 6 300 412. 8 341. 1 150

§ PINCH DESIGN METHOD RULE 2: DECOMPOSITION - THE HEN PROBLEM IS DIVIDED AT

§ PINCH DESIGN METHOD RULE 2: DECOMPOSITION - THE HEN PROBLEM IS DIVIDED AT THE PINCH INTO SEPARATE DESIGN TASKS. - TH E DESIGN IS STARTED AT THE PINCH AND DEVELOPED MOVING AWAY FROM THE PINCH.

DATA FOR EXAMPLE II Temperature Process Stream no. Type 1 2 3 4 Cold

DATA FOR EXAMPLE II Temperature Process Stream no. Type 1 2 3 4 Cold Hot Supply TS F Target TT F Heat Capacity Flowrates CP 4 10 BTU/h/ F 120 260 180 250 235 160 240 130 2. 0 3. 0 4. 0 1. 5 Tmin = 10 F QHmin = 50 104 BTU/h QCmin = 60 104 BTU/h Heat load Q 4 10 BTU/h 230. 0 300. 0 240. 0 180. 0

PINCH 2 4 H 260 190 160 250 190 130 240 180 120 240

PINCH 2 4 H 260 190 160 250 190 130 240 180 120 240 180 = 50 Btu/h Umin = 4 1 3 C = 60 Btu/h Umin = 3 PINCH DECOMPOSITION DEFINES THE SEPARATE DESIGN TASKS

BELOW THE PINCH 2 4 190 3 190 4 190 135 3 4 90

BELOW THE PINCH 2 4 190 3 190 4 190 135 3 4 90 30 ABOVE THE PINCH 2 4 260 170 G 60 Q 90 1. 5 90 2 120 CP Q 3 210 1. 5 90 2 225 1 2 220 -32 1 210 3 4 240 130 120 1 190 1 250 235 H 20 240 H 30 CP 3 160 2 90 180 180

2 260 1 4 250 235 H 20 240 H 30 2 90 1

2 260 1 4 250 235 H 20 240 H 30 2 90 1 210 4 3 90 Q 3 300 1. 5 180 120 1 2 230 180 3 4 240 160 3 2 Cp 4 30 C 130 60 THE COMPLETE MINIMUM UTILITY NETWORK

PINCH MATCH Pinch A Pinch Match 1 Pinch 2 Exchanger 2 is not a

PINCH MATCH Pinch A Pinch Match 1 Pinch 2 Exchanger 2 is not a pinch match 3 Pinch 2 1 Exchanger 3 is not a pinch match

FEASIBILITY CRITERIA AT THE PINCH Rule 1: Check the number of process streams and

FEASIBILITY CRITERIA AT THE PINCH Rule 1: Check the number of process streams and branches at the pinch point Above the Pinch : 1 PINCH 90 2 90 3 90 (80+ T 1) 80 (80+ T 2) Q 1 80 Q 2 Tmin = 10 C 4 5 80 80 Tmin = 10 C 4 5

FEASIBILITY CRITERIA AT THE PINCH Rule 1: Check the number of process streams and

FEASIBILITY CRITERIA AT THE PINCH Rule 1: Check the number of process streams and branches at the pinch point Below the Pinch : 90 1 90 (90 - T 1) 1 2 90 (90 - T 2) 2 80 3 80 Q 1 80 PINCH Q 2 90 90 3 4 80 4 5 80 5 PINCH Tmin = 10 C

FEASIBILITY CRITERIA AT THE PINCH Rule 2: Ensure the CP inequality for individual matches

FEASIBILITY CRITERIA AT THE PINCH Rule 2: Ensure the CP inequality for individual matches are satisfied at the pinch point. Above the Pinch : 1 2 Below the Pinch : CPH 2 T 2 3 4 CPC 4 PINCH Q 1 4 Q 1 CPC CPH 1 1 2 Q 2 PINCH T Tmin CPC 3 1 Tmin Q 3 4 3 Q 2 CPC CPH Q

Stream data at the pinch NH NC? Yes CPH CPC for every pinch match

Stream data at the pinch NH NC? Yes CPH CPC for every pinch match Yes No Split a cold stream No Place pinch matches Split a stream ( usually hot) Figure 8. 7 -7 Design procedure above the pinch. (From B. Linnhoff et al. , 1982. )

Stream data at the pinch NH NC? Yes CPH CPC for every pinch match

Stream data at the pinch NH NC? Yes CPH CPC for every pinch match Yes No Split a cold stream No Place pinch matches Split a stream ( usually hot) Figure 8. 7 -7 Design procedure below the pinch. (From B. Linnhoff et al. , 1982. )

CRITERION #3 ABOVE THE CP DIFFERENCE PINCH, INDIVIDUAL CP DIFFERENCE = CPC - CPH

CRITERION #3 ABOVE THE CP DIFFERENCE PINCH, INDIVIDUAL CP DIFFERENCE = CPC - CPH OVERALL CP DIFFERENCE = BELOW THE PINCH, INDIVIDUAL CP DIFFERENCE = CPH - CPC OVERALL CP DIFFERENCE = THE SUM OF THE INDIVIDUAL CP DIFFERENCES OF ALL PINCH MATCHES MUST ALWAYS BE BOUNDED BY THE OVERALL CP DIFFERENCE.

PINCH CP 4 2 5 3 Overall CP Difference = 8 - 6 =

PINCH CP 4 2 5 3 Overall CP Difference = 8 - 6 = 2 Total Exchanger CP Difference = 1 + 1 = 2 O. K.

PINCH CP 4 2 5 3 1 Overall CP Difference = 9 - 6

PINCH CP 4 2 5 3 1 Overall CP Difference = 9 - 6 = 3 Total Exchanger CP Difference = 1 + 1 = 2 O. K.

PINCH CP 3 2 8 1 Overall CP Difference = 9 - 5 =

PINCH CP 3 2 8 1 Overall CP Difference = 9 - 5 = 4 Total Exchanger CP Difference = 8 - 2 = 6 Criterion violated !

2 260 1 190 3 250 160 170 130 2 4 C 4 60

2 260 1 190 3 250 160 170 130 2 4 C 4 60 235 225 180 135 120 H 2 3 4 1 240 20232. 5 90 90 30 180 H 1 3 30 210 Cp Q 3 300 1. 5 180 2 230 4 240 190 Heat Load Loops heat loads can be shifted around the loop from one unit to another

4 2 H 4 3 H 1 2 3 C C Heat Load Loops

4 2 H 4 3 H 1 2 3 C C Heat Load Loops heat loads can be shifted around the loop from one unit to another

2 260 1 190 250 2 4 235 225 H 2 240 20232. 5

2 260 1 190 250 2 4 235 225 H 2 240 20232. 5 120 H 1 30 210 3 160 170 130 C 60 165 120 3 1 90 180 3 Heat Load Path heat loads can be shifted along the path

4 2 H 2 3 H 1 3 Heat Load Path heat loads can

4 2 H 2 3 H 1 3 Heat Load Path heat loads can be shifted along the path C C

2 260 190 1 2 4 250 235 H 20+X 3 C 130 60+X

2 260 190 1 2 4 250 235 H 20+X 3 C 130 60+X 221. 25 165 2 3 120 240 232. 5 H 1 30 210 X=7. 5 Q 3 300 1. 5 180 1 2 230 3 4 240 160 175 112. 5 Cp 90 180

Two ways to break the loop 1 1 If: 2 2 3 (a) L

Two ways to break the loop 1 1 If: 2 2 3 (a) L 2 + X L 4 - X L 3 + X L 1 - X 1 2 3 2 4 4 1 3 4 L 1>L 4 L 2>L 3 then: X=L 4 or X= -L 3

heater/cooler can be included in a loop 1 3 4 2 (b) H 1

heater/cooler can be included in a loop 1 3 4 2 (b) H 1 - X H 3 L 3 + X H L 4 - X H 2 + X 1 3 H 4 3 Figure 2. 28 - Complex loops and paths 4 4

Match 1 is not in the path 1 2 2 3 1 (c) 4

Match 1 is not in the path 1 2 2 3 1 (c) 4 L 3 + X H L 2 - X H+X H 1 2 4 3 Figure 2. 28 - Complex loops and paths C L 4 - X C C+X 3 4