Solving Quadratic Equations 8 6 by Factoring Warm

































- Slides: 33

Solving Quadratic Equations 8 -6 by Factoring Warm Up Lesson Presentation Lesson Quiz Holt Mc. Dougal Algebra 1 Algebra 11 Holt Mc. Dougal

Solving Quadratic Equations 8 -6 by Factoring Warm Up Find each product. 1. (x + 2)(x + 7) 2. (x – 11)(x + 5) x 2 + 9 x + 14 x 2 – 6 x – 55 3. (x – 10)2 x 2 – 20 x + 100 Factor each polynomial. (x + 5)(x + 7) 4. x 2 + 12 x + 35 (x – 7)(x + 9) 5. x 2 + 2 x – 63 6. x 2 – 10 x + 16 (x – 2)(x – 8) 7. 2 x 2 – 16 x + 32 2(x – 4)2 Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Objective Solve quadratic equations by factoring. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring You have solved quadratic equations by graphing. Another method used to solve quadratic equations is to factor and use the Zero Product Property. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 1 A: Use the Zero Product Property to solve the equation. Check your answer. (x – 7)(x + 2) = 0 x – 7 = 0 or x + 2 = 0 x = 7 or x = – 2 The solutions are 7 and – 2. Holt Mc. Dougal Algebra 1 Use the Zero Product Property. Solve each equation.

Solving Quadratic Equations 8 -6 by Factoring Example 1 A Continued Use the Zero Product Property to solve the equation. Check your answer. Check (x – 7)(x + 2) = 0 (7 – 7)(7 + 2) (0)(9) 0 Check (x – 7)(x + 2) = (– 2 – 7)(– 2 + 2) (– 9)(0) 0 Holt Mc. Dougal Algebra 1 0 0 0 0 Substitute each solution for x into the original equation.

Solving Quadratic Equations 8 -6 by Factoring Example 1 B: Use the Zero Product Property to solve each equation. Check your answer. (x – 2)(x) = 0 (x)(x – 2) = 0 x = 0 or x – 2 = 0 x=2 The solutions are 0 and 2. Check (x – 2)(x) = 0 (0 – 2)(0) (– 2)(0) 0 Holt Mc. Dougal Algebra 1 Use the Zero Product Property. Solve the second equation. (x – 2)(x) = 0 Substitute each (2 – 2)(2) 0 solution for x into (0)(2) 0 the original 0 0 equation. 0 0 0

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 1 a Use the Zero Product Property to solve each equation. Check your answer. (x)(x + 4) = 0 x = 0 or x + 4 = 0 x = – 4 The solutions are 0 and – 4. Check (x)(x + 4) = 0 (0)(0 + 4) (0)(4) 0 Holt Mc. Dougal Algebra 1 Use the Zero Product Property. Solve the second equation. (x)(x +4) = 0 Substitute each (– 4)(– 4 + 4) 0 solution for x into (– 4)(0) 0 the original 0 0 equation. 0 0 0

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 1 b Use the Zero Product Property to solve the equation. Check your answer. (x + 4)(x – 3) = 0 x + 4 = 0 or x – 3 = 0 x = – 4 or x=3 The solutions are – 4 and 3. Holt Mc. Dougal Algebra 1 Use the Zero Product Property. Solve each equation.

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 1 b Continued Use the Zero Product Property to solve the equation. Check your answer. (x + 4)(x – 3) = 0 Check (x + 4)(x – 3 ) = 0 (– 4 + 4)(– 4 – 3) 0 (0)(– 7) 0 0 0 Check (x + 4)(x – 3 ) = 0 (3 + 4)(3 – 3) (7)(0) 0 Holt Mc. Dougal Algebra 1 0 0 0 Substitute each solution for x into the original equation.

Solving Quadratic Equations 8 -6 by Factoring If a quadratic equation is written in standard form, ax 2 + bx + c = 0, then to solve the equation, you may need to factor before using the Zero Product Property. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Helpful Hint To review factoring techniques, see lessons 8 -3 through 8 -5. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 2 A: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x 2 – 6 x + 8 = 0 (x – 4)(x – 2) = 0 Factor the trinomial. x – 4 = 0 or x – 2 = 0 Use the Zero Product Property. x = 4 or x = 2 Solve each equation. The solutions are 4 and 2. Check x 2 – 6 x + 8 = 0 (4)2 – 6(4) + 8 0 (2)2 – 6(2) + 8 0 16 – 24 + 8 0 4 – 12 + 8 0 0 0 Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 2 B: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x 2 + 4 x = 21 – 21 x 2 + 4 x – 21 = 0 The equation must be written in standard form. So subtract 21 from both sides. (x + 7)(x – 3) = 0 Factor the trinomial. x + 7 = 0 or x – 3 = 0 x = – 7 or x = 3 Use the Zero Product Property. Solve each equation. The solutions are – 7 and 3. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 2 B Continued Solve the quadratic equation by factoring. Check your answer. x 2 + 4 x = 21 Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring. ● Holt Mc. Dougal Algebra 1 ● The graph of y = x 2 + 4 x – 21 shows that two zeros appear to be – 7 and 3, the same as the solutions from factoring.

Solving Quadratic Equations 8 -6 by Factoring Example 2 C: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. x 2 – 12 x + 36 = 0 (x – 6) = 0 x – 6 = 0 or x – 6 = 0 x=6 or x=6 Factor the trinomial. Use the Zero Product Property. Solve each equation. Both factors result in the same solution, so there is one solution, 6. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 2 C Continued Solve the quadratic equation by factoring. Check your answer. x 2 – 12 x + 36 = 0 Check Graph the related quadratic function. The graph of y = x 2 – 12 x + 36 shows that one zero appears to be 6, the same as the solution from factoring. ● Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Example 2 D: Solving Quadratic Equations by Factoring Solve the quadratic equation by factoring. Check your answer. – 2 x 2 = 20 x + 50 The equation must be written in – 2 x 2 = 20 x + 50 +2 x 2 standard form. So add 2 x 2 to 0 = 2 x 2 + 20 x + 50 both sides. 2 x 2 + 20 x + 50 = 0 Factor out the GCF 2. 2(x 2 + 10 x + 25) = 0 2(x + 5) = 0 2≠ 0 or x+5=0 x = – 5 Holt Mc. Dougal Algebra 1 Factor the trinomial. Use the Zero Product Property. Solve the equation.

Solving Quadratic Equations 8 -6 by Factoring Example 2 D Continued Solve the quadratic equation by factoring. Check your answer. – 2 x 2 = 20 x + 50 Check – 2 x 2 = 20 x + 50 – 2(– 5)2 – 50 Holt Mc. Dougal Algebra 1 20(– 5) + 50 – 100 + 50 – 50 Substitute – 5 into the original equation.

Solving Quadratic Equations 8 -6 by Factoring Helpful Hint (x – 3) is a perfect square. Since both factors are the same, you solve only one of them. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 a Solve the quadratic equation by factoring. Check your answer. x 2 – 6 x + 9 = 0 Factor the trinomial. (x – 3) = 0 x – 3 = 0 or x – 3 = 0 Use the Zero Product Property. Solve each equation. x = 3 or x = 3 Both equations result in the same solution, so there is one solution, 3. Check x 2 – 6 x + 9 = 0 Substitute 3 into the original equation. (3)2 – 6(3) + 9 0 9 – 18 + 9 0 0 0 Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 b Solve the quadratic equation by factoring. Check your answer. x 2 + 4 x = 5 – 5 x 2 + 4 x – 5 = 0 (x – 1)(x + 5) = 0 x – 1 = 0 or x + 5 = 0 x=1 or x = – 5 Write the equation in standard form. Add – 5 to both sides. Factor the trinomial. Use the Zero Product Property. Solve each equation. The solutions are 1 and – 5. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 b Continued Solve the quadratic equation by factoring. Check your answer. x 2 + 4 x = 5 Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring. ● ● Holt Mc. Dougal Algebra 1 The graph of y = x 2 + 4 x – 5 shows that the two zeros appear to be 1 and – 5, the same as the solutions from factoring.

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 c Solve the quadratic equation by factoring. Check your answer. 30 x = – 9 x 2 – 25 – 9 x 2 – 30 x – 25 = 0 Write the equation in standard form. – 1(9 x 2 + 30 x + 25) = 0 Factor out the GCF, – 1(3 x + 5) = 0 Factor the trinomial. – 1 ≠ 0 Use the Zero Product Property. – 1 cannot equal 0. or 3 x + 5 = 0 Solve the remaining equation. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 c Continued Solve the quadratic equation by factoring. Check your answer. 30 x = – 9 x 2 – 25 Check Graph the related quadratic function. The zeros of the related function should be the same as the solutions from factoring. ● Holt Mc. Dougal Algebra 1 The graph of y = – 9 x 2 – 30 x – 25 shows one zero and it appears to be at , the same as the solutions from factoring.

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 d Solve the quadratic equation by factoring. Check your answer. 3 x 2 – 4 x + 1 = 0 (3 x – 1)(x – 1) = 0 3 x – 1 = 0 or x = 1 The solutions are Holt Mc. Dougal Algebra 1 Factor the trinomial. Use the Zero Product Property. Solve each equation. and x = 1.

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 2 d Continued Solve the quadratic equation by factoring. Check your answer. 3 x 2 – 4 x + 1 = 0 Check 3 x 2 – 4 x + 1 = 0 3 – 4 +1 0 Holt Mc. Dougal Algebra 1 0 0 Check 3 x 2 – 4 x + 1 = 3(1)2 – 4(1) + 1 3– 4+1 0 0 0

Solving Quadratic Equations 8 -6 by Factoring Example 3: Application The height in feet of a diver above the water can be modeled by h(t) = – 16 t 2 + 8 t + 8, where t is time in seconds after the diver jumps off a platform. Find the time it takes for the diver to reach the water. h = – 16 t 2 + 8 t + 8 0 = – 8(2 t 2 – t – 1) The diver reaches the water when h = 0. Factor out the GFC, – 8. 0 = – 8(2 t + 1)(t – 1) Factor the trinomial. 0= – 16 t 2 Holt Mc. Dougal Algebra 1 + 8 t + 8

Solving Quadratic Equations 8 -6 by Factoring Example 3 Continued Use the Zero Product – 8 ≠ 0, 2 t + 1 = 0 or t – 1= 0 Property. 2 t = – 1 or t = 1 It takes the diver 1 second to reach the water. Solve each equation. Since time cannot be negative, does not make sense in this situation. Check 0 = – 16 t 2 + 8 t + 8 0 – 16(1)2 + 8(1) + 8 Substitute 1 into the original equation. 0 – 16 + 8 0 0 Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 3 What if…? The equation for the height above the water for another diver can be modeled by h = – 16 t 2 + 8 t + 24. Find the time it takes this diver to reach the water. h = – 16 t 2 + 8 t + 24 0= – 16 t 2 + 8 t + 24 The diver reaches the water when h = 0. 0 = – 8(2 t 2 – t – 3) Factor out the GFC, – 8. 0 = – 8(2 t – 3)(t + 1) Factor the trinomial. Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Check It Out! Example 3 Continued – 8 ≠ 0, 2 t – 3 = 0 or t + 1= 0 2 t = 3 or t = – 1 t = 1. 5 It takes the diver 1. 5 seconds to reach the water. Use the Zero Product Property. Solve each equation. Since time cannot be negative, – 1 does not make sense in this situation. Check 0 = – 16 t 2 + 8 t + 24 0 – 16(1. 5)2 + 8(1. 5) + 24 Substitute 1 into the 0 – 36 + 12 + 24 original equation. 0 0 Holt Mc. Dougal Algebra 1

Solving Quadratic Equations 8 -6 by Factoring Lesson Quiz: Part I Use the Zero Product Property to solve each equation. Check your answers. 1. (x – 10)(x + 5) = 0 10, – 5 2. (x + 5)(x) = 0 – 5, 0 Solve each quadratic equation by factoring. Check your answer. 3. x 2 + 16 x + 48 = 0 – 4, – 12 4. x 2 – 11 x = – 24 • Holt Mc. Dougal Algebra 1 3, 8

Solving Quadratic Equations 8 -6 by Factoring Lesson Quiz: Part II 5. 2 x 2 + 12 x – 14 = 0 1, – 7 6. x 2 + 18 x + 81 = 0 7. – 4 x 2 = 16 x + 16 – 9 – 2 8. The height of a rocket launched upward from a 160 foot cliff is modeled by the function h(t) = – 16 t 2 + 48 t + 160, where h is height in feet and t is time in seconds. Find the time it takes the rocket to reach the ground at the bottom of the cliff. 5 s Holt Mc. Dougal Algebra 1
5-3 solving quadratic equations by factoring
9-6 solving quadratic equations by factoring
Solving quadratic equations by factoring gcf worksheet
Section 5 topic 3 solving quadratic equations by factoring
Zero product rule
Solve by factoring x^2-9=0
Section 5 topic 3 solving quadratic equations by factoring
4-3 solving quadratic equations by factoring
5-3 solving quadratic equations by factoring
How to solve quadratic equations
Example of a quadratic equation
Solving equations warm up
Solving polynomial
9-4 factoring to solve quadratic equations
9-4 factoring to solve quadratic equations
How to use factoring to solve quadratic equations
Quadratic formula
Factoring diamond method
Solving quadratic equations algebraically
How to do quadratic equation
Square root method quadratic equations
Zero product property definition
How to factor equations
9-7 solving quadratic equations by using square roots
9-5 solving quadratic equations by graphing
9-5 solving quadratic equations by graphing
Objectives of quadratic equation
Quadratic formula vocab
Quadratic quadratic systems examples
Lesson 9-1 completing the square
9-3 solving quadratic equations by graphing
Chapter 9 solving quadratic equations
Completing the square (continued)
9-3 solving quadratic equations