Software Quality Assurance Recap What is testing Who

  • Slides: 41
Download presentation
Software Quality Assurance

Software Quality Assurance

Recap • • • What is testing? Who does testing? Why do we do

Recap • • • What is testing? Who does testing? Why do we do testing? Software testing process? Software Testing – Levels of testing – Methods/techniques of testing • Test cases • Writing effective test cases

What is SQA? • Software Quality Assurance is an umbrella activity that is applied

What is SQA? • Software Quality Assurance is an umbrella activity that is applied throughout the software process. . .

What is quality? • Quality refers to any measurable characteristics such as correctness, maintainability,

What is quality? • Quality refers to any measurable characteristics such as correctness, maintainability, portability, testability, usability, reliability, efficiency, integrity, reusability and interoperability.

Quality terminologies • • • Quality of Design refers to the characteristics that designer’s

Quality terminologies • • • Quality of Design refers to the characteristics that designer’s specify for an item. Quality of Conformance is the degree to which the design specifications are followed during manufacturing. Quality Control is the series of inspections, reviews and tests used throughout the development cycle to ensure that each work product meets the requirements placed upon it. Quality policy refers to the basic aims and objectives of an organization regarding quality as stipulated by the management. Quality assurance consists of the auditing and reporting functions of management. Cost of Quality includes all costs incurred in the pursuit of quality or in performing quality related activities such as appraisal costs, failure costs and external failure costs. Quality planning is the process of assessing the requirements of the procedure and of the product and the context in which these must be observed. Quality testing is assessment of the extent to which a test object meets given requirements Quality assurance plan is the central aid for planning and checking the quality assurance. Quality assurance system is the organizational structure, responsibilities, procedures, processes and resources for implementing quality management.

Relative cost of correcting an error?

Relative cost of correcting an error?

Elements of S/W Quality Assurance • • • Standards Reviews and audits Testing Error/defect

Elements of S/W Quality Assurance • • • Standards Reviews and audits Testing Error/defect collection and analysis Change management Education Vendor management Security management Safety Risk management

SQA tasks • Prepares an SQA plan for a project • Participates in the

SQA tasks • Prepares an SQA plan for a project • Participates in the development of the project’s software process description • Reviews software engineering activities to verify compliance with the defined software process • Audits designated software work products to verify compliance with those defined as part of the software process • Ensures that deviations in software work and work products are documented and handled according to a documented procedure • Records and noncompliance and reports to senior management

SQA Goals, Attributes and Metrics Metric • • • Attributes Ambiguity Completeness Understandability Volatility

SQA Goals, Attributes and Metrics Metric • • • Attributes Ambiguity Completeness Understandability Volatility • Traceability • Model clarity • • Goals Requirement quality • • Design quality • • Architectural integrity • • Component completeness • Interface complexity • • Patterns Number of ambiguous modifiers (e. g. , many, large, human-friendly) Number of TBAs, TBDs Number of sections/subsections Number of changes per requirement Time (by activity) when change is requested Number of requirements not traceable to design/code Number of UML models Number of descriptive pages per model Number of UML errors Existence of architectural model Number of components that trace to architectural model Complexity of procedural design Layout appropriateness Number of patterns used

SQA Goals, Attributes and Metrics Goals Code quality QC effectiveness • • • Attributes

SQA Goals, Attributes and Metrics Goals Code quality QC effectiveness • • • Attributes Complexity Maintainability Understandability Metric • Cyclomatic complexity • • • Design factors Percent internal comments Variable naming conventions • • Reusability • Percent reused components Documentation • Readability index • • Resource allocation • Completion rate • Review effectiveness • Testing effectiveness • • • Staff hour percentage per activity Actual vs. budgeted completion time Review metrics Number of errors found and criticality Effort required to correct an error Origin of error

SQA plan • Management section – describes the place of SQA in the structure

SQA plan • Management section – describes the place of SQA in the structure of the organization • Documentation section – describes each work product produced as part of the software process • Standards, practices, and conventions section – lists all applicable standards/practices applied during the software process and any metrics to be collected as part of the software engineering work • Reviews and audits section – provides an overview of the approach used in the reviews and audits to be conducted during the project • Test section – references the test plan and procedure document and defines test record keeping requirements • Problem reporting and corrective action section – defines procedures for reporting, tracking, and resolving errors or defects, identifies organizational responsibilities for these activities • Other – tools, SQA methods, change control, record keeping, training, and risk management

Statistical SQA • • Information about software defects is collected and categorized An attempt

Statistical SQA • • Information about software defects is collected and categorized An attempt is made to trace each defect to its underlying cause Isolate the vital few causes of the major source of all errors Then move to correct the problems that have caused the defects

Statistical SQA – Categories of errors • • • • Incomplete or erroneous specification

Statistical SQA – Categories of errors • • • • Incomplete or erroneous specification (IES) Misinterpretation of customer comm (MCC) Intentional deviation from specification (IDS) Violation of programming standards (VPS) Error in data representation (EDR) Inconsistent module interface (IMI) Error in design logic (EDL) Incomplete or erroneous testing (IET) Inaccurate or incomplete documentation (IID) Error in programming lang. Translation (PLT) Ambiguous or inconsistent human-computer interface (HCI) Miscellaneous (MIS) Most often IES, MCC and EDR are the vital few causes for majority of errors.

Identifying the vital few

Identifying the vital few

Statistical SQA

Statistical SQA

Example

Example

Statistical SQA – Six Sigma • • Most widely used strategy for statistical SQA

Statistical SQA – Six Sigma • • Most widely used strategy for statistical SQA Three core steps – Define customer requirements, deliverables and project goals via well-defined methods of customer communication – Measure the existing process and its output to determine quality – Analyze defect metrics and determine the vital few causes • If an existing software process is in place, but improvement is required six sigma suggests – Improve the process by eliminating the root causes of defects – Control the process to ensure that future work does not reintroduce the cases of defects • If an organization is developing a software process, the core steps are augmented – Design the process to (1) avoid the root causes of defects and (2) to meet customer requirements – Verify that the process model will, in fact, avoid defects and meet customer requirements

Reviews To uncover errors/defects • To uncover errors in function, logic, or implementation for

Reviews To uncover errors/defects • To uncover errors in function, logic, or implementation for any representation of the software • To verify that software meets its requirements • To ensure that software representation meets predefined standards • To achieve software development in a uniform manner • To make projects more manageable

Review Roles • Presenter (designer/producer). • Coordinator (not person who hires/fires). • Recorder –

Review Roles • Presenter (designer/producer). • Coordinator (not person who hires/fires). • Recorder – records events of meeting – builds paper trail • Reviewers – – maintenance oracle standards bearer user representative others

Formal Technical Reviews • • • Involves 3 to 5 people (including reviewers) Advance

Formal Technical Reviews • • • Involves 3 to 5 people (including reviewers) Advance preparation (no more than 2 hours person) required Duration of review meeting should be less than 2 hours Focus of review is on a discrete work product Review leader organizes the review meeting at the producer's request. Reviewers ask questions that enable the producer to discover his or her own error (the product is under review not the producer) Producer of the work product walks the reviewers through the product Recorder writes down any significant issues raised during the review Reviewers decide to accept or reject the work product and whether to require additional reviews of product or not.

Formality and Timing • Formal review presentations – resemble conference presentations. • Informal presentations

Formality and Timing • Formal review presentations – resemble conference presentations. • Informal presentations – less detailed, but equally correct. • Early – tend to be informal – may not have enough information • Later – tend to be more formal – Feedback may come too late to avoid rework

Formality and Timing • • • Analysis is complete. Design is complete. After first

Formality and Timing • • • Analysis is complete. Design is complete. After first compilation. After first test run. After all test runs. Any time you complete an activity that produce a complete work product.

Why do peer reviews? • • • To improve quality. Catches 80% of all

Why do peer reviews? • • • To improve quality. Catches 80% of all errors if done properly. Catches both coding errors and design errors. Enforce the spirit of any organization standards. Training and insurance.

Review Guidelines. . • Review the product, not producer • Set an agenda and

Review Guidelines. . • Review the product, not producer • Set an agenda and maintain it • Limit the debate • Enunciate problem areas, not to solve every problem noted • Take written notes • Allocate resources and time schedule for FTR’s • Use standards to avoid style disagreements. • Let the coordinator run the meeting and maintain order. • Limit the number of participants and insist upon advance preparation • Develop a checklist for each work product to be reviewed • Training for all reviewer’s • Reviewing earlier reviews Keep it short (< 30 minutes). • Don’t schedule two in a row. • Don’t review product fragments.

Effectiveness of review Defect Amplification and Removal • Used to illustrate the generation and

Effectiveness of review Defect Amplification and Removal • Used to illustrate the generation and detection of errors during design and code generation Development step Defects Errors from previous steps Errors passed through Amplified errors 1: x Newly identified errors Detection Percent efficiency for error detection Errors passed to next step

Effectiveness of review Defect Amplification and Removal No reviews With reviews

Effectiveness of review Defect Amplification and Removal No reviews With reviews

Effectiveness of review Defect Amplification and Removal

Effectiveness of review Defect Amplification and Removal

Example

Example

Review metrics and their use • Many metrics can be defined for technical reviews

Review metrics and their use • Many metrics can be defined for technical reviews • The following can be calculated for each review conducted: – – – Preparation effort (Ep) Assessment effort (Ea) Rework effort (Er) Work product size (WPS) Minor errors found (Errminor) Major errors found (Errmajor)

Analyzing review metrics • Total review effort (Ereview) – Ereview = Ep + Ea

Analyzing review metrics • Total review effort (Ereview) – Ereview = Ep + Ea + Er • Total number of errors (Errtot) – Errtot = Errminor + Errmajor • Error density represents the errors found per unit of work product reviewed – Error density = Errtot / WPS • Cost effectiveness of reviews – Effort saved per error = Etesting – Ereviews

Effectiveness of review Defect Amplification and Removal No reviews With reviews

Effectiveness of review Defect Amplification and Removal No reviews With reviews

Effectiveness of review Defect Amplification and Removal

Effectiveness of review Defect Amplification and Removal

Software reliability • Defined as the probability of failure free operation of a computer

Software reliability • Defined as the probability of failure free operation of a computer program in a specified environment for a specified time. • Can be measured directly and estimated using historical and developmental data (unlike many other software quality factors) • Software reliability problems can usually be traced back to errors in design or implementation. • Reliability metrics are units of measure for system reliability • System reliability is measured by counting the number of operational failures and relating these to demands made on the system at the time of failure • A long-term measurement program is required to assess the reliability of critical systems

Measuring S/W reliability • A measure of software reliability is mean time between failures

Measuring S/W reliability • A measure of software reliability is mean time between failures where • MTBF = MTTF + MTTR • MTTF = mean time to failure • MTTR = mean time to repair • Availability =MTTF/(MTTF + MTTR) * 100% • Software availability is the probability that a program is operating according to requirements at a given point in time

Example

Example

Software reliability -- Software safety • Processes that help reduce the probability that critical

Software reliability -- Software safety • Processes that help reduce the probability that critical failures will occur due to SW • Hazard analyses – Identify hazards that could call failure – Develop fault tree – Identify all possible causes of the hazard – Formally review the remedy for each • Redundancy • Require a written software safety plan • Require independent verification & validation

Example Fault Tree -- Thermal Loss of heat . . . Power failure Computer

Example Fault Tree -- Thermal Loss of heat . . . Power failure Computer failure Incorrect input Computer failure SW failed to throw switch . . . SW failed to throw switch Logic reversed

Software Safety • Redundancy – Replicated at the hardware level – Similar vs. .

Software Safety • Redundancy – Replicated at the hardware level – Similar vs. . dis-similar redundancy • Verification – Assuring that the software specifications are met • Validation – Assuring that the product functions as desired • Independence

ISO 9000 Quality Standards • ISO 9000 describes QA elements in generic terms –

ISO 9000 Quality Standards • ISO 9000 describes QA elements in generic terms – Elements include organizational structure, procedures, processes and resources. • It treats an enterprise as a network of interconnected processes. • To be ISO-complaint processes should adhere to the standards described. • Ensures quality planning, quality control, quality assurance and quality improvement. • From S/W engineering view point: An international standard which provides broad guidance to software developers on how to Implement, maintain and improve a quality software system capable of ensuring high quality software • Consists of 20 requirements. . . – Differs from country to country. . 23

ISO 9001 … requirements • • Management responsibility Quality system Contract review Design Control

ISO 9001 … requirements • • Management responsibility Quality system Contract review Design Control Document and data control Purchasing Control of customer supplied product • Product identification and traceability • Process control • Inspection and testing • Control of inspection, measuring and test equipment • Inspection and test status • Control of non-confirming product • Corrective and preventive action • Handling, storage, packaging, preservation and delivery • Control of quality records • Internal quality audits • Training • Servicing • Statistical techniques 25

Summary • • • SQA must be applied at each step SQA might be

Summary • • • SQA must be applied at each step SQA might be complex Software reviews are important SQA activities Statistical SQA helps improve product quality and software process Software Safety is essential for critical systems ISO 9001 standardizes the SQA activities 27