Silicio Per massa il Silicio circa il 26

  • Slides: 27
Download presentation
Silicio Per massa il Silicio è circa il 26% della crosta terrestre, (principalmente nella

Silicio Per massa il Silicio è circa il 26% della crosta terrestre, (principalmente nella forma di silice o quarzo cristallino (Si. O 2) ) , ed è il secondo elemento per abbondanza, dopo l’ossigeno. Molto raro è il cristallo di silicio.

Purificazione Sabbia (Si. O 2) e carbone (C) in una fornace Si. O 2+2

Purificazione Sabbia (Si. O 2) e carbone (C) in una fornace Si. O 2+2 C→Si+2 CO Metallurgic Grade Silicon (MGS) 98% Il Silicio è poverizzato e fatto Costo regire circa con HCl (gas) per fare trichlorosilane Si. HCl 3 3$/Kg un liquido ad alta pressione di vapore (bolle a 32°C ). Il trucco è che molte impurezze reagiscono con Cl e formano vari cloruri, ciascuno con diverso punto di ebollizione. Si+(Al, C) +3 HCl(gas)→Si. HCl 3+H 2+(Al, C, cloruri) Mediante distillazione frazionata si ottiene Si. HCl 3 di alta purezza 10 -9. Si. HCl 3+H 2→ 2 Si+3 HCl Electronic Grade Silicon (EGS) 10 -9

Growth Techniques • Czochralski Method (LEC) (Bulk Crystals) • Chemical Vapor Deposition (CVD) (Thin

Growth Techniques • Czochralski Method (LEC) (Bulk Crystals) • Chemical Vapor Deposition (CVD) (Thin films; epitaxial film growth) – Metal-Organic Chemical Vapor Deposition (MOCVD) • Molecular Beam Epitaxy (MBE) (Thin films) • Liquid Phase Epitaxy (LPE) (Thin films)

Czochralski Method Bridgeman Method a temperature gradient along the crucible growth speed ~ 2

Czochralski Method Bridgeman Method a temperature gradient along the crucible growth speed ~ 2 - 3 mm/minute O, C are contaminants!

Czochralski growth (1916)

Czochralski growth (1916)

32 inch , 80 cm

32 inch , 80 cm

Ora si cresce in modo assai più raffinato… Heterointerfaces Al. As

Ora si cresce in modo assai più raffinato… Heterointerfaces Al. As

Thin Film Growth (General) • High Quality Film (1µm or less thickness) deposited on

Thin Film Growth (General) • High Quality Film (1µm or less thickness) deposited on high quality substrate. • To minimize strain, need crystal structure of film & substrate to be ~ same (at least very similar) • Epitaxy: “in an ordered way” Homoepitaxy: same structure as substrate Heteroepitaxy: different structure than substrate

Epitaxial growth: crescita ordinata

Epitaxial growth: crescita ordinata

Chemical Vapor Deposition (CVD) • Example reaction: Si. H 4 (heat) (Silane gas) Si

Chemical Vapor Deposition (CVD) • Example reaction: Si. H 4 (heat) (Silane gas) Si + (On substrate) 2 H 2 (gas) • Reaction occurs in a sealed container (reactor) • NOTE!! Silane gas is highly toxic & highly explosive!! • NOTE!! Hydrogen gas is highly explosive!!!!

Metal-Organic Chemical Vapor Deposition (MOCVD) • Example reaction: Ga(CH 3)3 + (Metal-organic gas) 3

Metal-Organic Chemical Vapor Deposition (MOCVD) • Example reaction: Ga(CH 3)3 + (Metal-organic gas) 3 CH 4 (Methane gas) + As. H 3 (Arsene gas) Ga. As (on substrate) • Reaction occurs in a sealed container (reactor) • NOTE!! Arsene gas is highly toxic and highly flamable!! Methane gas is highly explosive!

MOCVD Dopants are introduced in precisely controlled amounts!

MOCVD Dopants are introduced in precisely controlled amounts!

Molecular Beam Epitaxy (MBE) • Thin film growth under ultra high vacuum. • Reactants

Molecular Beam Epitaxy (MBE) • Thin film growth under ultra high vacuum. • Reactants introduced by molecular beams. • Create beams by heating source of material in an effusion (or Knudsen) cell. • Several sources, several beams of different materials aimed at substrate Can deposit 1 atomic layer or less! • A very precisely defined mixture of atoms to give EXACTLY the desired material com

MBE

MBE

RHEED: Used with MOCVD & MBE electron beam probe to monitor surface film quality

RHEED: Used with MOCVD & MBE electron beam probe to monitor surface film quality One period of oscillation growth of one atomic layer of Ga. As (or whatever material)

MOCVD vs. MBE • Mainly useful for research lab experiments. Not efficient for mass

MOCVD vs. MBE • Mainly useful for research lab experiments. Not efficient for mass production! • High quality • Low growth rate MOCVD • Useful for lab experiments and for mass production! • Good-high quality • High growth rate

Liquid Phase Epitaxy (LPE) (Ga. As and other III-V materials) • Group III metal

Liquid Phase Epitaxy (LPE) (Ga. As and other III-V materials) • Group III metal utilized as solvent for As • Solvent cooled in contact with (Ga. As) substrate. Becomes saturated with As. Nucleation of Ga. As on substrate. • Slider, containing different solutes, can grow precise compositions of material

LPE

LPE

Heterointerfaces Al. As

Heterointerfaces Al. As

Leghe ternarie Al. Ga. N, Ga. As. N Controllo dell’energia del gap proibito: dispositivi

Leghe ternarie Al. Ga. N, Ga. As. N Controllo dell’energia del gap proibito: dispositivi selettivi sull’energia dei fotoni ( rivelatori o emettitori luce in regioni spettrali definite ) Controllo omogeneità lega______controllo omogeneità proprietà

Struttura a bande delle leghe Ga. As Al. As

Struttura a bande delle leghe Ga. As Al. As

Struttura a bande delle leghe Legge di Vegard P=Energy gap, lattice constant, etc. P(Ax.

Struttura a bande delle leghe Legge di Vegard P=Energy gap, lattice constant, etc. P(Ax. B 1 -x. C)=x. P(AC)+(1 -x)P(BC)

Struttura a bande delle leghe

Struttura a bande delle leghe